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ABSTRACT 
 
Sufficient controllable reactive power resources are essential for reliable operation of 

electric power systems. Inadequate reactive power support has led to voltage instability and 

has been a cause of several recent major power outages worldwide. Motivated by the industry 

need of effective algorithms of reactive power control planning to counteract voltage 

instability, this dissertation has developed a general framework for reactive power control 

planning to mitigate voltage instability and thus enhance the electric transmission system. 

A backward/forward search algorithm with linear complexity is developed to select 

candidate locations of reactive power controls while satisfying power system performance 

requirements. A mixed integer programming based algorithm is presented for reactive power 

control planning to restore equilibria under severe contingencies. A mixed integer 

programming based algorithm of reactive power control planning is developed to increase 

post-contingency voltage stability margins. A systematic algorithm is developed to coordinate 

planning of static and dynamic reactive power control devices while satisfying the 

performance requirements of voltage stability margin and transient voltage dip. All the 

developed algorithms are implemented with MATLAB and tested on the New England 39-bus 

system. The simulation results obtained indicate that the developed approaches can be used to 

effectively plan reactive power control devices for transmission enhancement.  
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CHAPTER 1  INTRODUCTION 
 
Future reliability levels of the electric transmission system require proper long-term 

planning to strengthen and expand transmission capability so as to accommodate expected 

transmission usage growth from normal load growth and increased long-distance power 

transactions. There are three basic options for strengthening and expanding transmission: (1) 

build new transmission lines, (2) build new generation at strategic locations, and (3) introduce 

additional control capability. Although all of these will continue to exist as options in the 

future, it is clear that options (1) and (2) have and will continue to become less and less viable. 

One obvious impediment to construction of new transmission is the need to acquire new 

right-of-way. This is not only expensive but also politically difficult due to environmental 

concerns as well as the public’s inherent resistance to siting high voltage facilities close to 

home or work. The recent emphasis on managing (particularly maintaining) existing assets is 

a response to this trend. In addition, the disaggregation of the traditional regulated, 

monopolistic utility company into a multiplicity of generation, transmission, distribution, and 

power marketing companies hinders strategic siting of generation for purposes of transmission 

enhancement since generation and transmission are owned and operated by separate 

organizations.  

As a result, there is significantly increased potential for application of additional power 

system control in order to strengthen and expand transmission in the face of growing 

transmission usage. The incentives for doing so are clear: there is little or no right-of-way, and 

relative to building new transmission or generation facilities, capital investment is much less.  

Although considerable work has been done in planning transmission in the sense of 

options (1)-(2), there has been little effort towards planning transmission control options in the 
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sense of option (3), yet the ability to consider these devices in the planning process is a clear 

need to the industry [1, 2, 3, 4]. The capacity of electric transmission systems may be 

constrained by thermal limits, voltage magnitude limits, or stability limits. Reference [5] 

provides a summary of power system planning methods to relieve thermal overloads or 

voltage magnitude violations on transmission facilities. There is less work done in the field of 

power system control planning to enhance the transmission system constrained by stability 

problems. 

The objective of this work is to design systematic control system planning algorithms to 

expand the capability of electric transmission systems with stability constraints. The proposed 

control planning algorithm will answer the following three questions: 

• what type of control device is needed, 

• where to implement the enhancement, and 

• how much is the control device needed. 

1.1 Voltage Stability and Reactive Power Control 

In the IEEE/CIGRE report [6], power system stability can be classified into rotor angle 

stability, voltage stability, and frequency stability as shown in Figure 1.1:  

• Rotor angle stability refers to the capability of synchronous machines in an 

interconnected power system to remain in synchronism subjected to a disturbance. 

• Voltage stability refers to the capability of a power system for maintenance of 

steady voltages at all buses in the system subjected to a disturbance under given 

initial operating conditions. 

• Frequency stability refers to the capability of a power system for maintenance of 
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steady frequency following a severe system upset resulting in a significant 

imbalance between generation and load. 

All these stability problems can lead to system failure [7]. However, voltage instability has 

been a cause of several recent major power outages worldwide [7], [8]. In this work, we focus 

on systems only having the voltage stability problem. The proposed control planning 

approach can be extended to consider other stability/security problems as well. 

 

 

 
Figure 1.1 Classification of power system stability 

 

Planning power systems is invariably performed under the assumption that the system is 

designed to withstand a certain set of contingencies. There is currently a 

disturbance-performance table within the NERC (North American Electric Reliability 

Corporation )/WECC (Western Electricity Coordinating Council) planning standards [9] 

which provides minimum post-disturbance performance specifications for credible events. 

The post-disturbance performance criteria regarding voltage stability include: 

• Minimum post-contingency voltage stability margin, 

• Transient voltage dip criteria (magnitude and duration). 

The rest of this section will introduce voltage stability margin and transient voltage dip. 
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Voltage stability margin is defined as the amount of additional load in a specific pattern of 

load increase that would cause voltage instability as shown in Figure 1.2. The potential for 

contingencies such as unexpected component (generator, transformer, transmission line) 

outages in an electric power system often reduces the voltage stability margin [10], [24]. Note 

that severe contingencies may cause the voltage stability margin to be negative (i.e. voltage 

instability).  

 

Figure 1.2 Voltage stability margin under different conditions 

A power system may have the minimum post-contingency voltage stability margin 

requirement. For example, the NERC/WECC voltage stability criteria require that:  

• The post-contingency voltage stability margin must be greater than 5% for N-1 

contingencies; 
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• The post-contingency voltage stability margin must be greater than 2.5% for N-2 

contingencies; 

• The post-contingency voltage stability margin must be greater than 0% for N-3 

contingencies. 

Appropriate power system control devices can be used to increase the voltage stability margin. 

Figure 1.2 shows the voltage stability margin under different operating conditions and 

controls.  

On the other hand, transient voltage dip is a temporary reduction of the voltage at a point 

in the electrical system below a threshold [11]. It is also called transient voltage sag. 

Excessive transient voltage dip may cause fast voltage collapse [4]. In this work, we focus on 

the transient voltage dip after a fault is cleared. Reference [12] provides information on 

transient voltage dip criteria following fault clearing related to power system stability. 

Information was included from utilities, reliability councils, relevant standards, and 

industry-related papers. The WECC criteria on transient voltage dip are summarized in the 

following and will be used to illustrate the proposed control planning approach. 

The WECC transient voltage dip criteria are specified in a manner consistent with the 

NERC performance levels of (A) no contingency, (B) an event resulting in the loss of a single 

element, (C) event(s) resulting in the loss of two or more (multiple) elements, and (D) an 

extreme event resulting in two or more (multiple) elements removed or cascading out of 

service conditions, as follows: 

• NERC Category A: Not applicable. 

• NERC Category B: Not to exceed 25% at load buses or 30% at non-load buses. 

Not exceed 20% for more than 20 cycles at load buses. 
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• NERC Category C: Not to exceed 30% at any bus. Not to exceed 20% for more 

than 40 cycles at load buses. 

• NERC Category D: No specific voltage dip criteria. 

Figure 1.3 shows the WECC voltage performance parameters with the transient voltage 

dip criteria clearly illustrated [9]. Again, appropriate power system controls can be utilized to 

mitigate the post-contingency transient voltage dip problem. 

 

Figure 1.3 Voltage performance parameters for NREC/WECC planning standards 

There are two types of control technologies that are today and most certainly will continue 

to be available to power system control engineers to counteract voltage stability problems. 

These include:  

• Power-electronic based transmission control: static VAR compensators (SVC), 

thyristor controlled series capacitors (TCSC), Static Compensator (STATCOM) 

and others that comprise the family of control technology generally referred to as 

flexible AC transmission systems (FACTS) [13]. 



www.manaraa.com

7 

 

• System protection schemes (SPS): mechanically switched shunt/series capacitors 

(MSC) and others. MSCs have been used for post-contingency control [14, 15, 16, 

17, 18, 19, 20, 21]. 

Of these, the first exerts continuous feedback control action; the second exerts discrete 

open-loop control action. Based on the response time, SVC and TCSC are often called 

dynamic VAR resources. MSC belongs to static VAR resources. Both static and dynamic VAR 

resources belong to reactive (power) control devices. SVC and TCSC are effective 

countermeasures to increase voltage stability margin and to counteract transient voltage dip 

problems. However, much cheaper MSC is often sufficient for increasing voltage stability 

margin [22]. In the MSC family, mechanically switched shunt capacitors are usually cheaper 

than mechanically switched series capacitors while their effectiveness depends on 

characteristics of power systems. 

On the other hand, SVC and TCSC can effectively mitigate transient voltage dip problems 

since they can provide almost instantaneous and continuously variable reactive power in 

response to grid voltage transients. It is hard for MSCs to counteract transient voltage dip 

problems because they can not be switched on and off rapidly and frequently and because the 

control amount is discrete. The various functions achievable by different reactive power 

control devices are summarized in Table 1.1.  

Table 1.1 Capabilities of different reactive power control devices 
 

Static VAR Dynamic 
VAR  

Mechanically switched 
shunt cap. 

Mechanically 
switched series cap. SVC TCSC

Increase voltage 
stability margin Yes Yes Yes Yes 

Transient voltage dip No No Yes Yes 
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A cost comparison of static and dynamic VAR resources is presented in Table 1.2 [23], [24]. 

The final selection of a specific reactive power control devices should be based on a 

comprehensive technical and economic analysis. 

Table 1.2 Cost comparison for reactive power control devices 
 

Static VAR Dynamic VAR 
 Mechanically switched 

shunt capacitor (500 kV) 
Mechanically switched 

series capacitor (500 kV) SVC TCSC 

Variable cost 
($ million/100 

MVar) 
0.41 0.75 5.0 5.0 

Fixed cost ($ 
million) 1.3 2.8 1.5 1.5 

 

1.2 Reactive Power Control Planning 
 

The problem addressed in this work is similar to the traditional reactive power planning 

problem [25], [26], [27], [28]. Generally, the reactive power planning problem can be 

formulated as a mixed integer nonlinear programming problem to minimize the installation 

cost of reactive power devices plus the system real power loss or production cost under the 

normal operating condition subject to a set of power system equality and inequality 

constraints. In the work described in this dissertation, however, we explicitly target the 

planning of reactive power controls, i.e., reactive power devices intended to serve as control 

response for contingency conditions. Thus the system real power loss or production cost is not 

included in this work.  

The reactive power control planning problem can be formulated as follows: minimize the 

installation cost of reactive power control devices subject to voltage stability margin and/or 

transient voltage dip requirements under a set of contingencies. It is complex to solve this 
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problem because of its large solution space, large number of contingencies, difficulty in 

evaluating the performance of candidate solutions, and lack of efficient mathematical solution 

technique as described in what follows: 

• Large solution space: The space of possible solutions is extremely large, since 

every bus and every transmission line offer possible control locations. If there are n 

candidate locations, the number of possible location combinations is 2n. In addition, 

the control amount at each candidate location can vary from the minimum 

allowable value to the maximum allowable value. 

• Large number of contingencies: There may exist a large number of N-1, N-2, or 

even N-3 contingencies having voltage stability problems. In the reactive power 

control planning, all of these contingencies need to be addressed. 

• System performance evaluation: Voltage stability margin and transient voltage dip 

magnitude and duration are used to measure system performance. However, they 

can not be analytically expressed as functions of control variables. Measuring 

these indices under a certain disturbance followed by a specific control action 

requires numerical simulation.  

• Lack of efficient mathematical solution technique: The reactive power control 

planning to increase voltage stability margin is essentially a MINLP problem. 

However, there is no general efficient mathematical programming technique for 

solving MINLP problems. 

The existing literature about reactive power control planning can be classified into two 

groups. The first group deals with static VAR planning to increase voltage stability margin. 

The second group is about dynamic VAR planning to improve transient voltage performance 
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or coordinated static and dynamic VAR planning.  

There are a few references which address static VAR planning to increase voltage stability 

margin. Obadina et. al. in [29] developed a method to identify reactive power control that will 

enhance voltage stability margin. The reactive power control planning problem was 

formulated in two stages. The first stage involves solving a nonlinear optimization problem 

which minimizes the control amount at pre-specified locations. The second stage utilizes a 

mixed integer linear programming which maximizes the number of deleted locations and 

minimizes the control amount at the remaining locations. Xu, et. al. in [30] used the 

conventional power flow method to assess the voltage stability margin. The method scale up 

entire system load in variable steps until the voltage instability point is reached. The modal 

analysis of the power flow Jacobian matrix was used to determine the most effective reactive 

power control sites for voltage stability margin improvement. Mansour, et. al. in [ 31] 

presented a tool to determine optimal locations for shunt reactive power control devices. The 

tool first computes the critical modes in the vicinity of the point of voltage collapse. Then 

system participation factors are used to determine the most suitable sites of shunt reactive 

power control devices for transmission system reinforcement. Ajjarapu, et. al. in [ 32] 

introduced a method of identifying the minimum amount of shunt reactive power support 

which indirectly maximizes the real power transfer before voltage collapse is encountered. 

The predictor-corrector optimization scheme was utilized to determine the maximum system 

loading point. The sensitivity of the voltage stability index derived from the continuation 

power flow (CPF) was used to select weak buses for locating shunt reactive power devices. A 

sequential quadratic programming algorithm was adopted to solve the optimization problem 

with the system security constraint. The objective function is minimizing the total reactive 
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power injection at the selected weak buses. Overbye, et. al. in [33] presented a method to 

identify optimal control recommendations to mitigate severe contingencies under which the 

voltage stability margin is negative (i.e. there is no post-contingency equilibrium). The degree 

of instability was quantified using the distance in parameter space between the desired 

operating point and the closest solvable point. The sensitivities of this measure to system 

controls were used to determine the best way to mitigate the severe contingency. Chen, et. al. 

in [34] presented a weak bus oriented reactive power planning to counteract voltage collapse. 

The algorithm identifies weak buses based on the right singular vector of the power flow 

Jacobian matrix. Then the identified weak buses were selected as candidate shunt reactive 

power control locations. The smallest singular value was used as the voltage collapse 

proximity index. The optimization problem was formulated to maximize the minimum 

singular value. Simulated annealing was applied to search for the final optimal solution. 

Granville, et. al. in [35] described an application of an optimal power flow [36], solved by a 

direct interior point method, to restore post-contingency equilibrium. The set of control 

actions includes rescheduling of generator active power, adjustments on generator terminal 

voltage, tap changes on LTC transformers, and minimum load shedding. Chang, et. al. in [37] 

presented a hybrid algorithm based on the simulated annealing method, the Lagrange 

multiplier, and the fuzzy performance index method for the optimal reactive power control 

allocation. The proposed procedure has three identified objectives: maximum voltage stability 

margin, minimum system real power loss, and maximum voltage magnitudes at critical points. 

Vaahedi, et. al. in [38] evaluated the existing optimal VAR planning/OPF tools for the voltage 

stability constrained reactive power control planning. A minimum cost reactive power support 

scheme was designed to satisfy the minimum voltage stability margin requirement given a 
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pre-specified set of candidate reactive power control locations. The problem formulation does 

not include the fixed VAR cost. The obtained results indicated that the OPF/VAR planning 

tools can be used to address the voltage stability constrained reactive power control planning. 

Additional advantages of these tools are: easier procedures and avoidance of engineering 

judgment in identifying the reactive power control amount at the candidate locations. Feng, et. 

al. in [39] identified reactive power controls to increase voltage stability margin under a single 

contingency using linear programming with the objective of minimizing the control cost. This 

formulation is suitable to the operational decision making problem. The fixed cost of new 

controls is not included in the formulation. Yorino, et. al. in [40] proposed a mixed integer 

nonlinear programming formulation for reactive power control planning which takes into 

account the expected cost for voltage collapse and corrective controls. The Generalized 

Benders Decomposition technique was applied to obtain the solution. The convergence of the 

solution can not be guaranteed because of the nonconvexity of the optimization problem. The 

proposed model does not include the minimum voltage stability margin requirement. 

On the other hand, the available literature on the dynamic VAR planning or coordinated 

static and dynamic VAR planning is very limited. Donde et. al. [41] presented a method to 

calculate the minimum capacity requirement of an SVC which satisfies the post-fault transient 

voltage recovery requirement which is a specific case of the transient voltage dip requirement. 

Given the target transient voltage recovery time, the minimum SVC capacity was obtained by 

solving a boundary value problem using numerical shooting methods. The CIGRE report [42] 

presented a Q-V analysis based procedure for the use by system planners to determine the 

appropriate mixture of static and dynamic VAR resources at a certain bus. First, the 

intersection of the required minimum voltage and the post-fault Q-V curve considering the 
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short-term exponential load characteristic determines the dynamic VAR requirement. Then, 

the intersection of the required minimum voltage and the post-fault Q-V curve with load 

modeled as constant power less the dynamic VAR requirement identified in the previous step 

is the needed amount of static VAR. An approach was presented in [3], [43], and [44] to 

identify static and dynamic reactive power compensation requirements for an electric power 

transmission system. First, optimal power flow techniques were used to determine the best 

locations for reactive power compensation. Then, Q-V analysis with the constant power load 

model was utilized to find the total amount of reactive compensation at identified locations. 

Finally, iterative time domain simulations were performed to determine a prudent mix of static 

and dynamic VAR resources. Kolluri et. al. presented a similar method in [45] to obtain the 

right mix of static and dynamic VAR resources in a utility company’s load pocket. All of the 

coordinated methods mentioned above use a sequential procedure to allocate static and 

dynamic VAR resources. 

This work develops a systematic approach for coordinated planning of static and dynamic 

VAR resources to satisfy the requirements of voltage stability margin and/or transient voltage 

dip under a set of contingencies and thus enhance transmission capability in voltage stability 

limited systems. We emphasize the coordinated planning of different types of VAR resources 

to achieve potential economic benefit. The proposed procedures for solving the reactive power 

control planning problem are based on the following assumptions: 

• No new transmission equipment (lines and transformers) is installed, and that 

generation expansion occurs only at existing generation facilities. This assumption 

creates conditions that represent the extreme form of current industry trend of 

relying heavily on control to strengthen and expand transmission capability 
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without building new transmission or strategically siting new generation. 

• Existing continuous controllers: The power system has an existing set of 

continuous controllers that are represented in the model, including controls on 

existing generators. 

• Candidate controllers: Candidate controllers include mechanically switched 

shunt/series capacitors or SVCs or coordinated use of any of these in combination. 

The proposed reactive power control planning approach requires three basic steps: (i) 

development of generation/load growth futures, (ii) contingency analysis, (iii) planning of 

reactive power controls to satisfy the requirements of voltage stability margin and/or transient 

voltage dip. The overall flowchart of the proposed reactive power control planning algorithm 

is illustrated in Figure 1.4.  

 

Figure 1.4 Flowchart for reactive power control planning 
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1.3 Dissertation Organization 
 
The rest of the dissertation is organized as follows: 

Chapter 2 presents a methodology to select candidate locations for reactive power controls 

while satisfying power system performance requirements. Optimal locations of new reactive 

power controls are obtained by the forward/backward search on a graph representing discrete 

configuration of controls. Further refinement of the control location and amount is ready to be 

done using the optimization methods presented in Chapters 3, 4 and 5. The proposed 

algorithm has complexity linear in the number of feasible reactive power control locations 

whereas the solution space is exponential. 

Chapter 3 proposes a new successive mixed integer programming (MIP) based algorithm 

to plan the minimum amount of switched shunt and series capacitors to restore equilibria of a 

power system after severe contingencies. Through parameterization of the severe 

contingencies, the continuation method is applied to find the critical points. Then, the 

backward/forward search method and the bifurcation point sensitivities to reactive power 

controls are used to select candidate locations for switched shunt and series capacitors. Next, a 

mixed integer programming formulation is proposed to estimate locations and amounts of 

switched shunt and series capacitors. Finally, mixed integer programming problems with 

updated information are utilized to further refine the reactive power control locations and 

amounts. 

Chapter 4 presents a successive MIP based method of reactive power control planning to 

increase voltage stability margin under a set of contingencies. The backward/forward search 

algorithm and voltage stability margin sensitivities are used to select candidate locations for 

switched shunt and series capacitors. Optimal locations and amounts of new reactive power 
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controls are obtained by solving a sequence of mixed integer programming problems. 

Chapter 5 proposes a method to coordinate planning of static and dynamic VAR resources 

when simultaneously considering the performance requirements of voltage stability margin 

and transient voltage dip. Transient voltage dip sensitivities are derived to select candidate 

locations for dynamic VAR resources. The successive MIP is proposed to calculate the 

optimal mix of static and dynamic VAR resources.  

Chapter 6 summarizes the specific contribution of the research work and discusses the 

future work that needs to be done. 
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CHAPTER 2  LINEAR COMPLEXITY SEARCH ALGORITHM  
TO LOCATE REACTIVE POWER CONTROL 

 

2.1 Introduction 
 

For reactive power control planning in large scale power systems, the pre-selection of the 

candidate locations to install new reactive power control devices is important. Usually, 

candidate control locations are chosen only based on the engineering judgment. There is no 

guarantee that the selected candidate control locations are effective and sufficient to provide 

required reactive power support for all concerned contingencies. On the other hand, the 

computational cost to solve the mixed integer linear/nonlinear programming problem for 

reactive power control planning may be high if the number of the candidate locations is large. 

This chapter presents a method to select appropriate candidate locations for reactive power 

control devices using the backward/forward search. The proposed method is illustrated in 

selecting candidate reactive power control locations to increase post-contingency voltage 

stability margin. The same method will be used to select candidate reactive power control 

locations to restore post-contingency equilibria and to mitigate transient voltage dip in 

Chapters 4 and 5 respectively. 

The chapter is organized as follows. Some fundamental concepts of voltage stability 

margin sensitivity are introduced in Section 2.2. Section 2.3 presents the problem formulation. 

Section 2.4 describes the proposed method of locating reactive power control devices. 

Numerical results are discussed in Section 2.5. Section 2.6 concludes. 

2.2 Voltage Stability Margin Sensitivity 
 

The goal of the chapter is to determine locations for reactive power control devices so as 

to enable improve voltage stability margin. Here, we formally define the notion of voltage 
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stability margin sensitivity to parameters, for we use such sensitivities in determining the 

desired reactive power control locations. The potential for contingencies such as unexpected 

component (generator, transformer, transmission line) outages in an electric power system 

often reduces the voltage stability margin to be less than the required value. We are interested 

in finding effective and economically justified reactive power controls at appropriate locations 

to steer operating points far away from voltage collapse points by having a pre-specified 

margin under a set of concerned contingencies. 

It is cost-effective to use mechanically switched shunt or series capacitors to increase the 

voltage stability margin although more expensive dynamic VAR resources such as SVC and 

TCSC can also be used. The voltage stability margin sensitivity is useful in comparing the 

effectiveness of the same type of controls at different locations [39]. In this chapter, the 

margin sensitivity [46], [47], [48], [49], [50] is used in candidate control location selection 

and contingency screening (see steps 2, 4, and 5 of the overall procedure in Section 2.4.1). In 

the following, an analytical expression of the margin sensitivity is given, which is what we use 

for its computation. The details of the margin sensitivity can be found in [46], [47], [49]. 

Suppose that the steady state of the power system satisfies a set of equations expressed in 

the vector form 

( , , ) 0F x p λ =                                  (2.1) 

where x is the vector of state variables, p is any parameter in the power system steady state 

equations such as the susceptance of shunt capacitors or the reactance of series capacitors, λ  

is the bifurcation parameter which is a scalar. At the voltage instability point, the value of the 

bifurcation parameter is equal to λ*.  

A specified system scenario can be parameterized by λ as 
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0(1 )li lpi liP K Pλ= +                                (2.2) 

0(1 )li lqi liQ K Qλ= +                                (2.3) 

0(1 )gj gj gjP K Pλ= +                                (2.4) 

Here, Pli0 and Qli0 are the initial loading conditions at the base case where λ is assumed to be 

zero. Klpi and Klqi are factors characterizing the load increase pattern. Pgj0 is the real power 

generation at bus j at the base case. Kgj represents the generator load pick-up factor.  

The voltage stability margin can be expressed as 

* *
0 0

1 1 1

n n n

li li lpi li
i i i

M P P K Pλ
= = =

= − =∑ ∑ ∑                        (2.5) 

The sensitivity of the voltage stability margin with respect to the control variable at 

location i, Si, is 

*

0
1

n

i lpi li
ii i

MS K P
p p

λ
=

∂ ∂
= =
∂ ∂ ∑                           (2.6) 

If the voltage collapse is due to a saddle-node bifurcation, the bifurcation point sensitivity 

with respect to the control variable pi evaluated at the saddle-node bifurcation point is 

* **

* *
ip

i

w F
p w Fλ

λ∂
= −

∂
                              (2.7a) 

where w is the left eigenvector corresponding to the zero eigenvalue of the system Jacobian 

Fx, Fλ is the derivative of F with respect to the bifurcation parameter λ and 
ipF  is the 

derivative of F with respect to the control variable parameter pi. 

If the voltage collapse is due to a limit-induced bifurcation [51], the bifurcation point 

sensitivity with respect to the control variable pi evaluated at the critical limit point (as 

opposed to at the saddle-node bifurcation point) is 
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where E(x, λ, p) = 0 is the limit equation representing the binding control limit (i.e. Qi - Qi
max = 

0 representing generator i reaches its reactive power limit), Eλ is the derivative of E with 

respect to the bifurcation parameter λ, and Epi is the derivative of E with respect to the control 

variable pi, w is the nonzero row vector orthogonal to the range of the Jacobian Jc of the 

equilibrium and limit equations where  

                                        
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= *

*

x

x
c E

F
J . 

 

2.3 Optimization Problem Formulation 
 

The reactive power control planning problem to increase voltage stability margin can be 

formulated as follows: 

min  

( )fi vi i i
i

J C C X q
∈Ω

= +∑                           (2.8) 

subject to 

( ) ( )
min( )

k k
iM X M≥ , k∀                         (2.9) 

i
k

ii XXX ≤≤ )(
min , k∀                       (2.10) 

maxmin iiiii XqXXq ≤≤                       (2.11) 

0,1iq =                              (2.12) 

The decision variables are Xi, Xi
(k) and qi.  
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Here,  

• Cf is fixed installation cost and Cv is variable cost of reactive power control devices, 

• Xi is the size (capacity) of reactive power control devices at location i, 

• qi=1 if the location i is selected for reactive power control expansion, otherwise, qi=0, 

• the superscript k represents the contingency that leads the voltage stability margin to 

be less than the required value, 

• Ω is the set of pre-selected feasible candidate locations to install reactive power control 

devices, 

• Xi
(k) is the size of reactive power control devices to be switched on at location i under 

contingency k, 

• Mmin is an arbitrarily specified voltage stability margin in percentage, 

• ( ) ( )( )
k k

iM X  is the voltage stability margin under contingency k with control Xi
(k), and 

• Ximin is the minimum size of reactive power control devices at location i which may be 

determined by physical and/or environmental considerations. 

• Ximax is the maximal size of reactive power control devices at location i which may be 

determined by physical and/or environmental considerations. 

This is a mixed integer nonlinear programming problem, with q being the collection of 

discrete decision variables and X being the collection of continuous decision variables. For k 

contingencies that have the voltage stability margin less than the required value and n 

pre-selected feasible candidate control locations, there are n(k+2) decision variables. In order 

to reduce the computational cost, it is important to limit the number of candidate control 

locations to a relative small number for problems of the size associated with practical 
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large-scale power systems. The candidate control locations could be selected by assessing the 

relative margin sensitivities [39], [40]. However, there is no guarantee that the pre-selected 

candidate control locations are appropriate. We propose an algorithm in Section 2.4 for 

selecting candidate control locations under the assumption that Xi
(k) and Xi are fixed at their 

maximal allowable value, i.e. Xi
(k) = Xi = Ximax; this reduces the problem to an integer 

programming problem where the decision variables are locations for reactive power control 

devices as follows: 

min 

max( )fi vi i i
i

J C C X q
∈Ω

= +∑                        (2.13) 

subject to 

minmax
)()(

)( MXqM i
k

i
k

≥ , k∀                     (2.14) 

i
k

i qq ≤)( , k∀                           (2.15) 

1,0)( =k
iq , k∀                          (2.16) 

0,1iq =                               (2.17) 

where qi
(k) = 1 if the location i is selected for reactive power control expansion under 

contingency k, otherwise, qi
(k) = 0. Here, the decision variables are qi and qi

(k). 

2.4 Methodology 
 
2.4.1 Overall Procedure 
 

In order to select appropriate candidate reactive power control locations the following 

procedure is applied: 

1) Develop generation and load growth future. In this step, the generation/load growth 



www.manaraa.com

23 

 

future is identified, where the future is characterized by a load growth percentage for each 

load bus and a generation allocation for each generation bus. For example, one future may 

assume uniformly increasing load at 5% per year and allocation of that load increase to 

existing generation (with associated increase in unit reactive capability) based on percentage 

of total installed capacity. Such generation/load growth future can be easily implemented in 

the continuation power flow (CPF) program [52], [53], [54] by parameterization as shown in 

(2.2), (2.3) and (2.4). 

2) Assess voltage stability by fast contingency screening and the CPF technique. We can 

use the CPF program to calculate the voltage stability margin of the system under each 

prescribed contingency. However, the CPF algorithm is time-consuming. If many 

contingencies must be assessed, the calculation time is large. The margin sensitivity can be 

used to speed up the procedure of contingency analysis as mentioned in Section 2.2. First, the 

CPF program is used to calculate (i) the voltage stability margin at the base case, (ii) the 

margin sensitivity with respect to line admittances, and (iii) the margin sensitivity with respect 

to bus power injections. The margin sensitivities are calculated according to (2.6). For circuit 

outages, the resulting voltage stability margin is estimated as 

( ) (0)k
lM M S l= + Δ                           (2.18) 

where M(k) is the voltage stability margin under contingency k, M(0) is the voltage stability 

margin at the base case, Sl is the margin sensitivity with respect to the admittance of line l, and 

lΔ  is the negative of the admittance vector for the outaged circuits. 

For generator outages, the resulting voltage stability margin is estimated as 

( ) (0)k
gM M S pq= + Δ                           (2.19) 
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where Sg is the margin sensitivity with respect to the power injection of generator g, and pqΔ  

is the negative of the output power of the outaged generators. 

Then the contingencies are ranked from most severe to least severe according to the value 

of the estimated voltage stability margin. After the ordered contingency list is obtained, we 

evaluate each contingency starting from the most severe one using the accurate CPF program 

and stop testing after encountering a certain number of sequential contingencies that have the 

voltage stability margin greater than or equal to the required value, where the number depends 

on the size of the contingency list. A similar idea has been used in online risk-based security 

assessment [55]. 

3) Determination of Expansion Year 

Assuming positive load growth but without system enhancement, the voltage stability 

margin decreases with time as shown in Figure 2.1. The year when the voltage stability margin 

becomes less than the required value is the time to enhance the transmission system by adding 

the reactive power control. 
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Figure 2.1 Determination of expansion year 
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4) Choose an initial set of switch locations using the bisection approach for each identified 

contingency possessing unsatisfactory voltage stability margin according to the following 3 

steps:  

a) Rank the feasible control locations according to the numerical value of margin 

sensitivity in descending order with location 1 having the largest margin sensitivity and 

location n having the smallest margin sensitivity.  

b) Estimate the voltage stability margin with top half of the switches included as 

⎣ ⎦

∑
=

+=
2/

1

)()()(
max

)(
n

i

kk
i

k
i

k
est MSXM                          (2.20) 

where )(k
estM  is the estimated voltage stability margin and / 2n⎢ ⎥⎣ ⎦  is the largest integer 

less than or equal to n/2. If the estimated voltage stability margin is greater than the 

required value, then reduce the number of control locations by one half, otherwise 

increase the number of control locations by adding the remaining one half.  

c) Continue in this manner until we identify the set of control locations that satisfies the 

voltage stability margin requirement.  

5) Refine candidate control locations for each identified contingency possessing 

unsatisfactory voltage stability margin using the proposed backward/forward search algorithm. 

We will present the backward/forward search algorithm in Sections 2.4.2 and 2.4.3.  

6) Obtain the final candidate control locations as the union of nodes for which voltage 

stability margin is satisfied, as found in step 5) for every identified contingency. 

The current backward/forward search over discrete modes has been done "one 

contingency at a time". This can be modified by considering all the contingencies 

simultaneously and it will result in a smaller set of candidate control locations. When we use 
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the proposed optimization formulation to further refine control locations and compute control 

amounts, it is expected that the final solution will be less optimal than considering one 

contingency at each time. In addition, the present approach ensures there is at least one 

effective candidate location for every contingency having unacceptable margin. The 

alternative approach does not offer this assurance, and so it could result in one or more 

contingencies not having an effective control location in the optimization. 

The overall procedure for selecting candidate control locations is shown in Figure 2.2. 

 

Figure 2.2 Flowchart for candidate control location selection 
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2.4.2 Backward Search Algorithm  
 

In the proposed search algorithms, we assume that there is only one reactive power switch 

at each location. The backward/forward search algorithm begins at an initial node representing 

control configuration and searches from that node in a prescribed direction, either backward or 

forward. The set of controls corresponding to the selected initial node can be chosen by the 

bisection approach. The two extreme cases are either searching backward from the node 

corresponding to all switches included (the strongest node) or forward from the node 

corresponding to all switches excluded (the weakest node).  

Consider the graph where each node represents a configuration of discrete switches, and 

two nodes are connected if and only if they are different in one switch configuration. The 

graph has 2n nodes where n is the number of feasible switches. We pictorially conceive of this 

graph as consisting of layered groups of nodes, where each successive layer (moving from left 

to right) has one more switch included (or “closed”) than the layer before it, and the tth layer 

(where t=0,…,n) consists of a number of nodes equal to n!/t!(n-t)!. Figure 2.3 illustrates the 

graph for the case of 4 switches.  

The backward search algorithm has 4 steps. 

1) Select the node corresponding to all switches in the initial set that are closed. 

2) For the selected node, check if voltage stability margin requirement is satisfied for the 

concerned contingency on the list. If not, then stop, the solution corresponds to the 

previous node (if there is a previous node, otherwise use the forward search algorithm). 

3) For the selected node, exclude (open) the switch that has the smallest margin sensitivity. 

We denote this as switch i*: 
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{ }( )* arg min
c

k
ii

i S
∈Ω

=                            (2.21) 

where cΩ ={set of closed switches for the selected node}, ( )k
iS  is the margin sensitivity 

with respect to the susceptance of shunt capacitors or the reactance of series capacitors 

under contingency k, at location i. 

4) Choose the neighboring node corresponding to the switch i* being off. If there is more 

than one switch identified in step 3, i.e. |i*|>1, then choose any one of the switches in i* to 

exclude (open). Return to step 2. 

Pre-contingency 
state 

(1111) 

(1110)

(1011)

(1101)

(0111)

(1100)

(1010)

(0110)

(1001)

(0101)

(0001)

(0011)

(1000)

(0100)

(0010)

(0000) 

Post-contingency 
state, no switches on 

All switches on 

 

Figure 2.3 Graph for 4-switch problem 
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2.4.3 Forward Search Algorithm  

The forward search algorithm has 4 steps. 

1) Start from an initial node. 

2) For the selected node, check if voltage stability margin requirement is satisfied for the 

concerned contingency on the list. If yes, then stop, the solution corresponds to the 

previous node (if there is a previous node, otherwise use the backward search 

algorithm). 

3) For the selected node, include (close) the switch that has the largest margin sensitivity. 

We denote this as switch j*: 

}maxarg{ )(k
jj

Sj
Ω∈

∗ =                            (2.22) 

where Ω = {set of pre-selected feasible locations}. 

4) Choose the neighboring node corresponding to the switch j* being closed. If there is 

more than one switch identified in step 3, i.e. |j*|>1, then choose any one of the 

switches in j* to include (close). Return to step 2. 

2.5 Case Study 
 

The proposed method has been applied to a test system adapted from [56] as shown in 

Figure 2.4 to identify good candidate locations for shunt or series reactive power control 

devices. Table 2.1 shows the system loading and generation of the base case.  

In the simulations, the following conditions are implemented unless stated otherwise: 

• Constant power loads; 

• Required voltage stability margin is assumed to be 15%; 

• In computing voltage stability margin, the power factor of the load bus remains 
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constant when the load increases, and load and generation increase are 

proportional to their base case value. 
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T2 T3
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Figure 2.4 Modified WECC nine-bus system 
 
 

Table 2.1 Base case loading and dispatch for the modified WECC system 
 

 Load A Load B Load C G1 G2 G3 

MW 147.7 106.3 118.2 128.9 163.0 85.0 

MVar 59.1 35.5 41.4 41.4 16.7 -1.9 
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A contingency analysis was performed on the system. For each bus, consider the 

simultaneous outage of 2 components (generators, lines, transformers) connected to the bus. 

There exist 2 contingencies that reduce the post-contingency voltage stability margin to be 

less than 15%, and they are shown in Table 2.2. 

 
Table 2.2 Voltage stability margin under contingencies for the WECC system 

 

Contingency Voltage stability margin (%) 
1. Outage of lines 5-4A and 5-4B 4.73 
2. Outage of transformer T1 and line 4-6 4.67 

 
 
2.5.1 Candidate Location Selection for Shunt Capacitors 
 

We first select candidate locations for shunt capacitors under the outage of lines 5-4A and 

5-4B. Table 2.3 summarizes the steps taken by the backward search algorithm in terms of 

switch sensitivities, where we have assumed the susceptance of shunt capacitors to be 

installed at feasible buses ( )
max 0.3 . .k

i i iX X X p u= = =  We take the initial network configuration 

as six shunt capacitors at buses 4, 5, 6, 7, 8, and 9 are switched on. The voltage stability 

margin with all six shunt capacitors switched on is 17.60% which is greater than the required 

value of 15%. Therefore, the number of switches can be decreased to reduce the cost. At the 

first step of the backward search, we compute the margin sensitivity for all six controls as 

listed in the 4th column. From this column, we see that the row corresponding to the shunt 

capacitor at bus 4 has the minimal sensitivity. So in this step of backward search, this 

capacitor is excluded from the list of control locations indicated by the strikethrough. 

Continuing in this manner, in the next three steps of the backward search we exclude shunt 

capacitors at buses 6, 9, and 8 sequentially. However, as seen from the last column of Table 
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2.3, with only 2 controls at buses 5 and 7, the voltage stability margin is unacceptable at 

13.98%. Therefore the final solution must also include the capacitor excluded in the last step, 

i.e., the shunt capacitor at bus 8. The location of these controls are intuitively pleasing given 

that, under the contingency, Load A, the largest load, must be fed radially by a long 

transmission line, a typical voltage stability problem. 

Table 2.3 Steps taken in the backward search algorithm for shunt capacitor planning 
 

No.  no cntrl. 6 cntrls.
5 cntrls. 

(reject #6)
4 cntrls. 

(reject#5)
3 cntrls. 

(reject#4) 
2 cntrls. 

(reject#3)

1 
Sens. of shunt cap. 
at bus 5 0.738 0.879 0.877 0.874 0.868 0.851 

2 
Sens. of shunt cap. 
at bus 7 0.334 0.384 0.384 0.382 0.379 0.370 

3 
Sens. of shunt cap. 
at bus 8 0.240 0.284 0.284 0.282 0.278  

4 
Sens. of shunt cap. 
at bus 9 0.089 0.106 0.105 0.104   

5 
Sens. of shunt cap. 
at bus 6 0.046 0.056 0.056    

6 
Sens. of shunt cap. 
at bus 4 0.019 0.023     

 Loadability (MW) 389.8 437.7 437.0 435.4 432.4 424.3 

 
Voltage stability 
margin (%) 4.73 17.60 17.42 16.99 16.17 13.98 

 

Figure 2.5 shows the corresponding search via the graph. In the figure, node O represents 

the origin configuration of discrete switches from where the backward search originates, and 

node R represents the restore configuration associated with a minimal set of discrete switches 

which satisfies the voltage stability margin requirement (this is the node where the search 

ends). 
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Reject the shunt capacitor at bus 4

Reject the shunt capacitor at bus 6

Reject the shunt capacitor at bus 9

R O

 

 
Figure 2.5 Graph for the backward search algorithm for shunt capacitor planning 

 
 

Table 2.4 summarizes the steps taken by the forward search algorithm in terms of switch 

sensitivities, where we have again assumed ( )
max 0.3 . .k

i i iX X X p u= = =  The initial network 

configuration is chosen as no shunt capacitor is switched on. Here, at each step, the switch 

with the maximal margin sensitivity is included (closed), as indicated in each column by the 

numerical value within the box. Figure 2.6 shows the corresponding search via the graph. 
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Table 2.4 Steps taken in forward search algorithm for shunt capacitor planning 
 

No.  
no  
cntrl 

1 cntrl 
add # 1 

2 cntrls 
add # 2 

3 cntrls 
add # 3 

1 Sensitivity of shunt cap. at bus 5 0.738    

2 Sensitivity of shunt cap. at bus 7 0.334 0.356   

3 Sensitivity of shunt cap. at bus 8 0.240 0.256 0.265  

4 Sensitivity of shunt cap. at bus 9 0.089 0.095 0.098  
5 Sensitivity of shunt cap. at bus 6 0.046 0.049 0.050  
6 Sensitivity of shunt cap. at bus 4 0.019 0.021 0.021  
 Loadability (MW) 389.8 413.3 424.2 432.4 
 Voltage stability margin (%) 4.73 11.04 13.97 16.17 

 

 

Add the shunt capacitor at bus 5

Add the shunt capacitor at bus 7

Add the shunt capacitor at bus 8

RO

 

Figure 2.6 Graph for the forward search algorithm for shunt capacitor planning 



www.manaraa.com

35 

 

The solution obtained from the forward search algorithm is the same as that obtained using 

the backward search algorithm: shunt capacitors at buses 5, 7 and 8. This is guaranteed to 

occur if switch sensitivities do not change as the switching configuration is changed, i.e., if the 

system is linear. We know power systems are nonlinear, and the changing sensitivities across 

the columns for any given row of Tables 2.3 or 2.4 confirm this. However, we also observe 

from Tables 2.3 and 2.4 that the sensitivities do not change much, thus giving rise to the 

agreement between the algorithms. For large systems, however, we do not expect the two 

algorithms to identify the same solution. And of course, neither algorithm is guaranteed to 

identify the optimal solution. But both algorithms will generate good solutions. This will 

facilitate good reactive power planning design. 

The optimization problem of (2.13)-(2.17) could be solved by a traditional integer 

programming method, e.g., the branch-and-bound algorithm. However, our algorithm has 

complexity linear in the number of switches n, whereas branch and bound has worst case 

complexity of order 2n. The improvement in complexity comes at the expense of optimality: 

branch-and-bound finds an optimal solution, whereas our algorithm finds a solution that is 

set-wise minimal. There can exist more than one minimal set solution, and to compute an 

optimal solution, one will have to examine all of them which we avoid for the sake of 

complexity gain. 

For the outage of transformer T1 and line 4-6, the solution obtained by the forward search 

algorithm is: shunt capacitors at buses 4 and 5. Therefore, the final candidate locations for 

shunt capacitors are buses 4, 5, 7, and 8 which guarantee that the voltage stability margin 

under all prescribed N-2 contingencies is greater than the required value.  
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2.5.2 Candidate Location Selection for Series Capacitors 
 

Series capacitor compensation has two effects that are not of concern for shunt capacitor 

compensation. First, series capacitors can expose generator units to risk of sub-synchronous 

resonance (SSR), and such risk must be investigated. Second, series capacitors also have 

significant effect on real power flows. In our work, we intend that both shunt and series 

capacitors be used as contingency-actuated controls (and therefore temporary) rather than 

continuously operating compensators. As a result, the significance of how they affect real 

power flows may decrease. However, the SSR risk is still a significant concern. To address 

this issue, the planner must identify a-priori lines where series compensation would create 

SSR risk and eliminate those lines from the list of candidates. 

Table 2.5 summarizes the steps taken by the forward search algorithm to plan series 

capacitors for the outage of lines 5-4A and 5-4B, where we have assumed the reactance of 

series capacitor to be installed in feasible lines 
( )

max 0.06 . .k
i i iX X X p u= = =  We take the initial 

network configuration as no series capacitor is switched on. At each step, the switch with the 

maximal margin sensitivity is included, as indicated in each column by the numerical value 

within the box. Figure 2.7 shows the corresponding search via the graph. 

Table 2.5 shows that the solution utilizes 2 controls. These controls are series capacitors in 

lines 5-7A and 5-7B. Again, the location of these controls are intuitively pleasing. 

For the outage of transformer T1 and line 4-6, the solution obtained by the forward 

algorithm is the same as the result for the outage of lines 5-4A and 5-4B: series capacitors in 

lines 5-7A and 5-7B. Therefore, the final candidate locations for series capacitors are lines 

5-7A and 5-7B.  
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Table 2.5 Steps taken in forward search algorithm for series capacitor planning 
 

No.  
no  
cntrl 

1 cntrl 
add # 1 

2 cntrls 
add # 2 

1 Sensitivity of series cap. in line 5-7A 4.861   

2 Sensitivity of series cap. in line 5-7B 4.861 4.575  

3 Sensitivity of series cap. in line 8-9 1.747 2.056  
4 Sensitivity of series cap. in line 4-6 0.288 0.332  
5 Sensitivity of series cap. in line 7-8A 0.046 0.045  
6 Sensitivity of series cap. in line 7-8B 0.046 0.045  
7 Sensitivity of series cap. in line 6-9A 0.008 0.007  
8 Sensitivity of series cap. in line 6-9B 0.008 0.007  
 Loadability (MW) 389.8 415.3 439.8 
 Voltage stability margin (%) 4.73 11.58 18.16 

 

Add the series capacitor in line 5-7A

Add the series capacitor in line 5-7B

O
R

 

Figure 2.7 Graph for the forward search algorithm for series capacitor planning 



www.manaraa.com

38 

 

2.6 Summary 
 

This chapter presents a method of locating reactive power controls in electric transmission 

systems to satisfy performance requirements under contingencies. Further refinement of 

control locations and amounts is ready to be done using the optimization methods proposed in 

Chapters 3, 4 and 5. The proposed algorithm has complexity linear in the number of feasible 

reactive power control locations whereas the solution space is exponential. The effectiveness 

of the method is illustrated by using a modified WSCC 9-bus system. The results show that 

the method works satisfactorily to find good candidate locations for reactive power controls. 
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CHAPTER 3  REACTIVE POWER CONTROL PLANNING TO  
RESTORE EQUILIBRIUM 

 

3.1 Introduction 
 

Voltage instability is one of the major threats to power system operation [24]. Severe 

contingencies such as tripping of heavily loaded transmission lines or outage of large 

generating units can cause voltage instability when no new equilibrium of the power system 

exists (i.e. the voltage stability margin is negative) after contingencies. In face of the loss of 

equilibrium voltage instability, switched shunt and series capacitors are generally effective 

control candidates [10], [18], [24]. The problem, also referred to as power flow solvability 

restoration, was initially addressed through the so-called non-divergent power flow [33], [57]. 

An approach for determining the minimum load shedding to restore an equilibrium of a power 

system based on the total equilibrium tracing method [58] was proposed in [59]. In [40], a 

mixed integer nonlinear programming formulation was presented for the reactive power 

control planning problem. Load shedding was used to guarantee the existence of power flow 

solution after contingencies. 

In this chapter, we present a new approach for planning the minimum amount of switched 

shunt and series capacitors to restore the voltage stability when no equilibria exist due to 

severe contingencies. Through parameterization of severe contingencies, the continuation 

method is applied to find the critical point. Then, the backward/forward search algorithm with 

linear complexity is used to select candidate locations for switched shunt and series 

capacitors. Next, a mixed integer programming formulation is proposed for estimating 

locations and amounts of switched shunt and series capacitors to withstand a planned set of 

contingencies. A sequence of MIP problems with updated information is utilized to further 
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refine the control locations and amounts. Because our problem formulation is linear, it is 

scalable and at the same time provides good solutions as evidenced by the application to the 

New England 39-bus system. 

3.2 Contingency Analysis via Parameterization and Continuation 
 

A power system may lose equilibrium after severe contingencies. The techniques of 

contingency parameterization and continuation can be used for planning corrective reactive 

power controls to restore equilibrium. This section presents the technique of contingency 

analysis via parameterization and continuation. There are basically two types of contingencies 

that cause voltage instability. One is branch type of contingency such as the outage of 

transformers or transmission lines. The other is node type of contingency such as the outage of 

generators or shunt reactive power compensation devices. The contingency parameterization 

for both types of contingencies is as follows. 

3.2.1 Parameterization of Branch Outage 
 

The set of parameterized power flow equations at bus i for the outage of branch br 

connecting bus i to bus m is as follows:  
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where { }ijYjiL ij ≠≠= ,0:)(  is the set of buses that are directly connected to bus i through 

transmission lines, Gij+jBij is the (i, j) element of the bus admittance matrix, Gii+jBii is the ith 

diagonal element of the bus admittance matrix, θij is the voltage angle difference between bus 
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i and bus j, Vi and Vj are voltage magnitude of bus i and bus j respectively, new
ii

new
ii jBG +  is the 

new kth diagonal element of the bus admittance matrix and new
im

new
im jBG +  is the new (i, m) 

element of the bus admittance matrix after branch br has been removed from the system, 

inj
iP and inj

iQ are real power and reactive power injections at bus i. Pim(Vi, Vm, λ) and Qim(Vi, 

Vm, λ) are defined as follows: 

})sincos(){1(),,( 2 br
iiiim

br
imim

br
immimiim GVBGVVVVP ++−= θθλλ            (3.2) 

})cossin(){1(),,( 2 br
iiiim

br
imim

br
immimiim BVBGVVVVQ −−−= θθλλ            (3.3) 

When λ=0, (3.1) represents the original set of power flow equations before contingency. 

On the other hand, when λ=1, (3.1) is the new set of power flow equations with branch br 

removed. Figure 3.1 shows the parameterization of branch outage where Yc is one-half of the 

total shunt admittance per phase to neutral of the branch and Yseries is the total series 

admittance per phase of the branch. Similar formulation was presented in [60] which uses the 

parameterization of branch outage to investigate the effects of varying branch parameters on 

power flow solutions. 

 

 

Bus i Bus m

Pim+jQim Pmi+jQmi

seriesY)1( λ−

cY)1( λ− cY)1( λ−

 

 
Figure 3.1 Parameterization of branch outage 
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3.2.2 Parameterization of HVDC Link Outage 
 

A high voltage direct current (HVDC) link consists of a rectifier and an inverter as shown 

in Figure 3.2. The rectifier side of the HVDC link may be represented as a load consuming 

positive real and reactive power. On the other hand, the inverter side of the HVDC link may 

be represented as a generator providing positive real power and negative reactive power (i.e. 

absorbing positive reactive power) [61].  

The set of parameterized power flow equations at the terminal bus r of the rectifier side of 

the HVDC link is as follows: 
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where Prec, Qrec are real and reactive power as seen from the AC network at the rectifier 

terminal bus under the normal operating condition respectively. 

The set of parameterized power flow equations at the terminal bus i of the inverter side of 

the HVDC link is as follows: 
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where Pinv, Qinv are real and reactive power as seen from the AC network at the inverter 

terminal bus under the normal operating condition respectively. 

When λ=0, (3.4) and (3.5) represent the set of power flow equations before contingency. 

On the other hand, when λ=1, (3.4) and (3.5) are the set of power flow equations after the 

HVDC link is shut down. 
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Figure 3.2 Parameterization of HVDC link outage 
 

3.2.3 Parameterization of Generator Outage 
 

The parameterized power flow equation at bus i for the outage of the generator at that bus 

is as follows: 
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where Pgi and Pdi are generator real power output and load real power respectively, Qgi and Qdi 

are generator reactive power output and load reactive power respectively. For a generator of 

PV type, Qgi is the reactive power output under the normal operating condition.  

Assume the real power generation loss Pgi is reallocated among the available generators as 
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follows: 

gi
iz

gz PP =Δ∑
≠

                             (3.7) 

Where ΔPgz is the specified real power increase of available generator z after the faulted 

generator i is removed from the system.  

The parameterized power flow equation at generator bus z for the outage of the generator 

at bus i is as follows: 

0)sincos( 2

)(
=−+−−Δ+ ∑

∈
zzz

iLj
zjzjzjzjjzdzgzgz GVBGVVPPP θθλ           (3.8) 

When λ=0, (3.6) and (3.8) represent the power flow equations before contingency. On the 

other hand, when λ=1, (3.6) and (3.8) are the power flow equations after the generator at bus i 

is shut down. 

3.2.4 Continuation Method 
 

Generally, the parameterized set of equations representing steady state operation of a 

power system under a N-k contingency (where k>1) can be represented as 

F(x, p, λ) = 0                            (3.9) 

where x is the vector of state variables, p is any controllable parameter such as the susceptance 

of switched shunt capacitors or the reactance of switched series capacitors, λ is the scalar 

uncontrollable bifurcation parameter which parameterizes the simultaneous outage of k 

components. Specifically, when λ=0, the set of parameterized steady state equations 

represents the one before contingency. On the other hand, when λ=0, the set of parameterized 

steady state equations is the one after all faulted k components are removed from the system. 

The continuation method can be used to find the critical point associated with a 

contingency precisely and reliably. In addition, the sensitivity information obtained as a 
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by-product of the continuation method is useful for reactive power control planning. 

Generally, the continuation method can be applied to solve the following problem [62]. 

Given a mapping F: nn RRRR →×× , find solutions to 0),,( =λpxF  where 

RRpRx n ∈∈∈ λ,, . 

Power system engineers have applied the continuation method to continuation power flow 

on varying bus power injections [52], [53], [54] and on varying branch parameters [60]. [63] 

combines the continuation power flow on varying bus injections and branch parameters to 

study the existence of power flow solution under severe contingencies. During the 

continuation process, λ is increased from 0 to 1 as shown in Figure 3.3. If there is a stable 

operating point after a contingency, the continuation method can find this point with λ* = 1. If 

there is no power flow solution following a contingency, the continuation method will obtain a 

critical point with λ* < 1.  

V
ol

ta
ge

1.0λ ∗λ

∗− λ1

0  

Figure 3.3 Bifurcation curve obtained by the continuation method 
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If the critical point is due to saddle-node bifurcation, the sensitivity of the critical point 

with respect to the control variable p is 

**

***

λ

λ
Fw
Fw

p
p−=

∂
∂                            (3.10) 

where Fλ* is the derivative of F with respect to the bifurcation parameter λ evaluated at the 

critical point and Fp
* is the derivative of F with respect to the control variable p evaluated at 

the critical point. In the following section, the bifurcation parameter sensitivity is used to plan 

cost-effective reactive power controls against voltage collapse. 

If the critical point is due to a limit-induced bifurcation, the sensitivity of the critical point 

to the control variable pi is 
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where E(x, λ, p) = 0 is the limit equation representing the binding control limit, Eλ is the 

derivative of E with respect to the bifurcation parameter λ, and Epi is the derivative of E with 

respect to the control variable pi, w is the nonzero row vector orthogonal to the range of the 

Jacobian Jc of the equilibrium and limit equations where  
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3.3 Formulation for Reactive Power Control Planning 
 
3.3.1 Flowchart for Reactive Power Control Planning 
 

A flowchart for planning minimum switched shunt and series capacitors to restore an 

equilibrium of a power system after severe contingencies is shown in Figure 3.4. 
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Figure 3.4 Flowchart for the minimum reactive power control planning to restore equilibrium 
 

3.3.2 Voltage Stability Analysis 
 

The procedure of voltage stability analysis is similar to the one presented in Section 2.4.1, 

Chapter 2. The contingencies are ranked from most severe to least severe according to the 

value of the estimated voltage stability margin using the procedure introduced in Section 2.4.1. 

After the ordered contingency list is obtained, we evaluate each contingency starting from the 

most severe one using the accurate continuation method and stop testing after encountering a 

certain number of sequential contingencies having the critical value λ* greater than or equal to 
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one, where the number depends on the size of the contingency list.  

3.3.3 Selection of Candidate Control Locations 
 

An important step in the reactive power control planning problem is the selection of the 

candidate locations for switched shunt and series capacitors. The backward/forward search 

algorithm with linear complexity proposed in Chapter 2 can be used to find candidate 

locations separately for switched shunt and switched series capacitors under every 

contingency where we use the contingency parameterization instead of the conventional 

generation/load parameterization. It is assumed that the capacities of switched shunt and 

switched series capacitors are fixed at the maximum allowable value in this step.  

3.3.4 Formulation of Initial Mixed Integer Programming 
 

In the previous step, we find the candidate locations for switched shunt and series 

capacitors separately. There exists redundancy of control locations when we plan switched 

shunt and series capacitors together. We use a mixed integer programming (MIP) to estimate 

control locations and amounts. The MIP minimizes control installation cost while restoring 

equilibria (i.e. the bifurcation parameter at the critical point λ* is greater than or equal to one): 

minimize 
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min maxi i i i iB q B B q≤ ≤                            (3.17) 

min maxj j j j jX q X X q≤ ≤                           (3.18) 

1,0, =ji qq                               (3.19) 

The decision variables are Bi
(k), Bi, qi, Xj

(k), Xj, and qj. 

Here,  

• Cf is fixed installation cost and Cv is variable cost of switched shunt or series 

capacitors, 

• Bi is the size (susceptance) of the switched shunt capacitor at location i, 

• Xj is the size (reactance) of the switched series capacitor at location j, 

• qi=1 if location i is selected for reactive power control expansion, otherwise, qi=0 (the 

same to qj), 

• the superscript k represents the contingency under which there is no equilibrium, 

• Ω1 is the set of candidate locations to install switched shunt capacitors, 

• Ω2 is the set of candidate locations to install switched series capacitors, 

• Bi
(k) is the size of the shunt capacitor to be switched on at location i under contingency 

k,  

• Xj
(k) is the size of the series capacitor to be switched on at location j under contingency 

k, 

• Si
(k) is the sensitivity of the bifurcation parameter with respect to the susceptance of the 

shunt capacitor at location i under contingency k,  

• Sj
(k) is the sensitivity of the bifurcation parameter with respect to the reactance of the 

series capacitor at location j under contingency k, 
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• λ*(k) is the bifurcation parameter evaluated at the critical point under contingency k and 

without controls, 

• Bimin is the minimum size of the switched shunt capacitor at location i, 

• Bimax is the maximum size of the switched shunt capacitor at location i, 

• Xjmin is the minimum size of the switched series capacitor at location j, and 

• Xjmax is the maximum size of the switched series capacitor at location j. 

Note that constraints (3.17) and (3.18) guarantee that (i) if the size of the switched shunt or 

series capacitors is zero, the location variable is zero, (ii) if the size of the switched shunt or 

series capacitors is nonzero, the location variable is nonzero, (iii) if the location variable is 

zero, the size of the switched shunt or series capacitors is zero, and (iv) if the location variable 

is non-zero, the size of the switched shunt or series capacitors is nonzero. Therefore the 

objective function in (3.13) is equivalent to  

j
j

fjjvji
i

fiivi qCXCqCBCJ ∑∑
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21

)()('                      (3.20) 

However, the objective function in (3.13) is preferred because it is a mixed integer linear 

objective function instead of the mixed integer nonlinear objective function in (3.20).  

For k contingencies that do not have post-fault equilibria and n pre-selected candidate 

control locations, there are n(k+2) decision variables and k+3n+2kn constraints. The number 

of candidate control locations can be limited to a relative small number even for problems of 

the size associated with practical power systems by using the backward/forward search 

algorithm. Therefore, computational cost for solving the above MIP is not high even for large 

power systems. 

The output of the MIP is the control locations and amounts for all k contingencies and the 
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combined control location and amount. For each concerned contingency, the identified 

controls are switched on, and λ* is recalculated to check if an equilibrium is restored. 

However, because we use the linear sensitivity to estimate the effect of the variations of 

control variables on the value of the bifurcation parameter at the critical point, there may be 

contingencies that have λ* less than one after the network configuration is updated according 

to the results of the MIP. Also, the obtained solution may not be optimal after one iteration of 

MIP. The control locations and/or amounts can be further refined by solving a second-stage 

mixed integer programming with updated information. In the successive MIP, we use updated 

sensitivity at each iteration. 

3.3.5 Formulation of MIP with Updated Information 
 

The successive MIP is formulated to minimize the total control installation cost subject to 

the constraint of equilibrium restoration, as follows: 

minimize 
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1,0, =ji qq                               (3.27) 

The decision variables are 
)(k

iB , iB , iq , 
)(k

jX , jX  and jq .  

Here,  

• iB  is the new size of the switched shunt capacitor at location i,  

• jX  is the new size of the switched series capacitor at location j, 

• iq  and jq are new binary control location variables, 

• 
( )k
iS  is the updated sensitivity of the bifurcation parameter with respect to the 

susceptance of the switched shunt capacitor at location i under contingency k,  

• 
( )k
jS  is the updated sensitivity of the bifurcation parameter with respect to the 

reactance of the switched series capacitor at location j under contingency k, 

• 
)(k

iB is the new size of the switched shunt capacitor at location i under contingency k ,  

• 
)(k

jX is the new size of the switched series capacitor at location j under contingency k , 

and 

• 
)*(k

λ is the updated bifurcation parameter evaluated at the critical point under 

contingency k . 

The above successive MIP will end until all post-contingency equilibria are restored and 

there is no significant movement of the decision variables from the previous MIP solution as 

shown in Figure 3.4. 

3.4 Application to New England System 
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The proposed method has been applied to the New England 39 bus system [64] shown in 

Figure 3.5.  
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Figure 3.5 New England 39-bus test system 

 
In the simulations, the following conditions are implemented unless stated otherwise: 

• Constant power load model is used; 

• For generator outage, the generation loss is picked up by available generators 

proportional to their base case value; 

• The branch-and-bound method and the primal-dual interior-point method are used 
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to solve the mixed integer programming problems [66]. 

• The parameter values adopted in the optimization problem are given in Table 3.1. 

Table 3.1 Parameter values in the optimization formulation to restore equilibrium 
 

 Shunt capacitor Series capacitor 
Maximum size (p.u.) 2.0 50% compensation 
Minimum size (p.u.) Bimin=10-3 Xjmin=10-3 

 

Considering all N-1 contingencies, the voltage stability of the system is analyzed by the 

fast contingency screening and the continuation method presented in section 3.3.2. There exist 

2 contingencies that cause the system to be unsolvable as shown in Table 3.2. 

Table 3.2 Critical point under two severe contingencies for the New England system 
 

Contingency λ* 
(1). Outage of the generator at bus 38 0.92 
(2). Outage of the generator at bus 39 0.82 

 

The candidate control locations are determined based on the backward/forward search 

algorithm presented in Section 2.4. The best five candidate buses to install switched shunt 

capacitors are buses 1, 9, 28, 29, 39. The best three candidate lines to install switched series 

capacitors are lines 1-2, 6-7, 25-26. For these candidate locations, the reactive power control 

planning algorithm presented in Section 3.3 was carried out.  

The optimal control allocations are shown in Table 3.3 indicating that a switched series 

capacitor of 0.0205 p.u. on line 1-2, a switched series capacitor of 0.0150 p.u. on line 25-26 

and a switched shunt capacitor of 0.5094 p.u. at bus 39. The total cost for the control 

allocation is $7.1355 million. If only switched shunt capacitors were chosen as candidate 
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reactive power controls, the total cost for the control allocation is $9.3569 million which is 

31.1% higher than that of coordinated planning of switched shunt and series capacitors. This 

result shows that benefit could be obtained by coordinated planning of different types of 

discrete reactive power controls. Table 3.4 gives the verified results of the reactive power 

control planning with the continuation method. Clearly, the value of the bifurcation parameter 

at the critical point λ* under the concerned contingencies is increased to the required value of 

1.0 p.u. with the planned controls. The iteration number in the second column represents the 

number of times of performing the MIP to obtain the optimal solution.  

 
Table 3.3 Control allocations for shunt and series capacitors to restore equilibrium 

 

Candidate locations for 
shunt and series capacitors 

Maximal size limit
(p.u.) 

Overall optimal 
control allocation 

(p.u.) 

Solution to 
cont. (1) 

(p.u.) 

Solution to
cont. (2) 

(p.u.) 
Bus 39 2.0 0.5094 0 0.5094 

Line 1-2 0.0205 0.0205 0.0205 0.0205 
Line 25-26 0.0162 0.0150 0.0150 0 

 
Table 3.4 Critical point under planned controls 

 

Candidate control Iteration number for MIP λ* for cont. (1) λ* for cont. (2)

Shunt and series 
capacitors 3 1.00 1.00 

 

The computation in the proposed reactive control planning method is done only to (a) 

calculate the critical points and sensitivities and (b) solve the optimization. It is only in 

calculating the critical points and sensitivities that we must deal with the full size of the power 

system. Computation associated with optimization is mainly affected by the number of 

candidate controls.  
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3.5 Summary 
 

This chapter presents an optimization based method of planning reactive power controls in 

electric transmission systems to restore equilibria under severe contingencies. The planned 

reactive power controls are capable to serve a planned set of contingencies. Optimal locations 

and amounts of new switch controls are obtained by solving a sequence of mixed integer 

programming problems. The proposed approach can handle a large-scale power system 

because it significantly reduces the computational cost by fully utilizing the information of the 

sensitivity of the bifurcation parameter at the critical point. The effectiveness of the method is 

illustrated by applying to the New England 39 bus system. The results show that the method 

works satisfactorily to plan switched shunt and series capacitors to restore post-contingency 

equilibria. After the equilibria are restored, the post-contingency voltage stability margin of 

the system can be increased to a required value by solving an optimization problem proposed 

in the next chapter. 
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CHAPTER 4  REACTIVE POWER CONTROL PLANNING TO  
INCREASE VOLTAGE STABILITY MARGIN 

 

4.1 Introduction 
 

In the last chapter, we propose an algorithm to restore equilibria of a power system under 

severe contingencies by adding the minimum amount of switched shunt/series capacitors. 

After the equilibrium is restored under each severe contingency, the voltage stability margin is 

just equal to zero. At this point, a small disturbance can result in a negative voltage stability 

margin and cause voltage collapse. On the other hand, the potential for moderate 

contingencies often leads to small voltage stability margins. We need to add more reactive 

power control devices to increase the voltage stability margin to be greater than a 

pre-specified value.  

In this chapter, a method is presented for the reactive power control planning to increase 

post-contingency voltage stability margin. Mechanically switched shunt and series capacitors 

are used as the reactive power control means. Instead of considering only the most severe 

contingency or considering several contingencies sequentially [65] the proposed planning 

method considers multiple contingencies simultaneously. The backward/forward search 

algorithm with linear complexity is used to select candidate control locations. An initial mixed 

integer linear programming (MILP) formulation using voltage stability margin sensitivities is 

proposed to estimate reactive power control locations and amounts from the candidates. The 

objective function of the MILP is to minimize the total installation cost including fixed cost 

and variable cost of new controls while satisfying the voltage stability margin requirement 

under contingencies. A sequence of MILP with updated margin sensitivities is proposed to 

refine control amounts and/or locations from the initial MILP result until the voltage stability 
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margin requirement is satisfied and there is no significant movement of the decision variables 

from the previous MIP solution. The CPF program is utilized to check the true voltage 

stability margin after each MILP. This iterative process is required to account for system 

nonlinearities. The branch-and-bound and primal-dual interior-point methods [66] are used to 

solve the optimization problem. Because the optimization formulation is linear, it is fast, yet it 

provides good solutions for large-scale power systems compared with nonlinear optimization 

formulations.  

The following assumptions are made in this chapter: 

• The system planner has identified a-priori lines where series compensation would 

create sub-synchronous resonance (SSR) risk and has eliminated those lines from 

the list of candidates. 

• Voltage magnitude control is addressed as a refinement following identification of 

the reactive power resources necessary to satisfy the voltage stability margin 

requirements.  

The chapter is organized as follows. Section 4.2 describes the proposed method of the 

reactive power control planning. Numerical results are discussed in Section 4.3. Section 4.4 

concludes. 

4.2 Algorithm of Reactive Power Control Planning 
 

The proposed reactive power control planning approach requires three stages: (1) select 

candidate control locations, (2) use MIP to estimate control locations and amounts from stage 

1 locations, and (3) use MIP with updated information to refine control amounts and/or 

locations from stage 2 locations and amounts. The overall procedure for the reactive power 
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control planning is shown in Figure 4.1 which integrates the above mentioned steps. 

 

  

 
Figure 4.1 Flowchart for the reactive power control planning to increase voltage stability 

margin 
 

4.2.1 Selection of Candidate Control Locations 
 

The backward/forward search algorithm with linear complexity presented in Chapter 2 is 

used to find candidate locations separately for switched shunt and switched series capacitors 
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under every contingency. 

4.2.2 Formulation of Initial Mixed Integer Programming 
 

In stage 1, we find the candidate locations for switched shunt and series capacitors 

separately. In this stage, we use a mixed integer programming (MIP) to estimate control 

locations and amounts from candidate control locations. The MIP minimizes the total control 

installation cost while increasing the voltage stability margin to a required percentage x for 

each concerned contingency. 

minimize 
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The decision variables are Bi
(k), Bi, qi, Xj

(k), Xj, and qj.  

Here,  

• Cfi is fixed installation cost and Cvi is variable cost of mechanically switched shunt 

capacitors, 

• Cfj is fixed installation cost and Cvj is variable cost of mechanically switched series 
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capacitors, 

• Bi is the size (susceptance) of the switched shunt capacitor at location i,  

• Xj is the size (reactance) of the switched series capacitor at location j, 

• qi=1 if location i is selected for reactive power control expansion, otherwise, qi=0 (the 

same to qj),  

• the superscript k represents the contingency under which there is insufficient voltage 

stability margin, 

• Ω1 is the set of candidate locations to install switched shunt capacitors, 

• Ω2 is the set of candidate locations to install switched series capacitors, 

• Bi
(k) is the size of the shunt capacitor to be switched on at location i under contingency 

k, 

• Xj
(k) is the size of the series capacitor to be switched on at location j under contingency 

k, 

• ( )k
iS  is the sensitivity of the voltage stability margin with respect to the susceptance of 

the shunt capacitor at location i under contingency k, 

• ( )k
jS  is the sensitivity of the voltage stability margin with respect to the reactance of 

the series capacitor at location j under contingency k, 

• x is an arbitrarily specified voltage stability margin in percentage, 

• Pl0 is the forecasted system load, 

• M(k) is the voltage stability margin under contingency k and without controls, 

• Bimin is the minimum size of the switched shunt capacitor at location i, 

• Bimax is the maximum size of the switched shunt capacitor at location i, 
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• Xjmin is the minimum size of the switched series capacitor at location j, and 

• Xjmax is the maximum size of the switched series capacitor at location j. 

Note that, we identify the minimum set of switched shunt and series capacitors to restore 

equilibrium points under severe contingencies using the successive MIP in Chapter 3. We may 

then increase the voltage stability margin for these contingencies to the required value along 

with other contingencies having insufficient voltage stability margin. In order to minimize the 

total installation cost of switched shunt and series capacitors, the previously identified 

switched shunt and series capacitors can be utilized to increase the voltage stability margin for 

other contingencies. For example, if Bi amount of switched shunt capacitor is identified at 

location i and Bi
(k) amount (Bi

(k) can be zero under other contingencies) of switched shunt 

capacitor at location i needs to be switched on under contingency k to restore the equilibrium 

point, there will be no cost for using Bi-Bi
(k) and no fixed cost for using Bimax-Bi to increase the 

voltage stability margin. Consequently, the fixed as well as variable cost for Bi-Bi
(k) is set to be 

zero and the fixed cost for Bimax-Bi is set to be zero in the above MIP problem. 

For k contingencies that have the voltage stability margin less than the required value and 

n selected candidate control locations, there are n(k+2) decision variables and k+3n+2kn 

constraints. For the same reason as in Section 3.3.4, the computational cost for solving the 

above mixed integer programming formulation is not high even for large-scale power systems. 

The branch-and-bound and primal-dual interior-point methods are used to solve this mixed 

integer programming problem. 

The output of the mixed integer programming problem is the control locations and 

amounts for all k contingencies and the combined control location and amount. Then the 

network configuration is updated by switching in the controls under each contingency. After 
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that, the voltage stability margin is recalculated using CPF to check if sufficient margin is 

achieved for each concerned contingency. This step is necessary because the voltage stability 

margin nonlinearly depends on control variables, and our mixed integer programming 

algorithm uses linear margin sensitivities to estimate the effect of variations of control 

variables on the voltage stability margin. As a result, there may be contingencies that have 

insufficient voltage stability margin after updating the network configuration according to 

results of the initial mixed integer programming problem. Also, the obtained solution may not 

be optimal after one iteration of MIP. The control locations and/or amounts are further refined 

by recomputing margin sensitivities (with updated network configuration) under each 

concerned contingency, and solving a second-stage successive MIP with updated information, 

as described in the next subsection. 

4.2.3 Formulation of MIP with Updated Information 
 

The successive MIP is formulated to minimize the total control installation cost subject to 

the constraint of the voltage stability margin requirement, as follows: 

minimize 
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jjjjj qXXqX maxmin ≤≤                       (4.13) 

1,0, =ji qq                             (4.14) 

The decision variables are 
)(k

iB , iB , iq , 
)(k

jX , jX  and jq .  

Here,  

• iB  is the new size of the switched shunt capacitor at location i, 

• jX  is the new size of the switched series capacitor at location j, 

• iq  and jq are new binary control location variables, 

• ( )k
iS  is the updated sensitivity of the voltage stability margin with respect to the 

susceptance of the shunt capacitor at location i under contingency k,  

• ( )k
jS  is the updated sensitivity of the voltage stability margin with respect to the 

reactance of the series capacitor at location j under contingency k, 

• 
)(k

iB is the new size of the switched shunt capacitor at location i under contingency k ,  

• 
)(k

jX is the new size of the switched series capacitor at location j under contingency k , 

and 

• ( )k
M  is the updated voltage stability margin under contingency k. 

The above successive MIP will end until all concerned contingencies have satisfactory 

voltage stability margin and there is no significant movement of the decision variables from 

the previous MIP solution.  

4.3 Numerical Results 
 

The proposed method has been applied to the New England 39-bus system. In the 
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simulations, the following conditions are implemented unless stated otherwise: 

• Loads are modeled as constant power; 

• In computing voltage stability margin, the power factor of the load bus remains 

constant when the load increases, and load and generation increase are 

proportional to their base case value; 

• The system MVA base is 100; 

• Required voltage stability margin is assumed to be 10%; 

• The parameter values adopted in the optimization problem are given in Table 4.1. 

 
Table 4.1 Parameter values in the optimization formulation  

 

 
Shunt 

capacitor 
Series 

capacitor 

Maximum size (p.u.) 1.5 
70% 

compensation 

Minimum size (p.u.) Bimin=10-3 Xjmin=10-3 
 

Considering all N-1 contingencies, using the fast contingency screening and CPF 

methods, there exist 3 contingencies that result in a post-contingency voltage stability margin 

less than 10% as shown in Table 4.2. 

 
Table 4.2 Voltage stability margin under three moderate contingencies  

 

Contingency Voltage Stability Margin (%) 

(1). Outage of the generator at bus 31 2.69 

(2). Outage of the generator at bus 32 2.46 

(3). Outage of the generator at bus 35 2.42 
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The candidate control locations are determined based on the linear search algorithm 

presented in Chapter 2. The best seven candidate buses to install switched shunt capacitors are 

buses 5, 6, 7, 10, 11, 12, and 13. The best eight candidate lines to install switched series 

capacitors are lines 2-3, 3-4, 4-5, 6-7, 8-9, 13-14, 15-16, and 16-19. For these candidate 

locations, the optimization based reactive power control planning algorithm presented in 

Sections III.E and III.F was carried out. 

In order to demonstrate the efficacy of the proposed method, two cases are considered as 

follows. In case 1, only switched shunt capacitors are chosen as candidate controls while both 

switched shunt and switched series capacitors are chosen as candidate controls in case 2. 

Table 4.3 shows the results for case 1 where the optimal allocations for switched shunt 

capacitors are 0.747 p.u., 1.500 p.u., 0.866 p.u., 1.500 p.u. and 1.500 p.u. at buses 5, 6, 10, 11, 

and 12 respectively. The total cost is $ 9.006 million for the control allocations in case 1. On 

the other hand, the optimal control allocations for case 2 are shown in Table 4.4 indicating a 

switched series capacitor of 0.011 p.u. on line 2-3, a switched series capacitor of 0.025 p.u. on 

line 8-9 and a switched shunt capacitor of 0.973 p.u. at bus 12. For case 2, the total cost for 

control allocations is $ 7.326 million which is 18.7% less than that of case 1. This result shows 

that benefit can be obtained by coordinated planning of different types of discrete reactive 

power controls. Table 4.5 gives the verified results of the reactive power control planning with 

the continuation power flow program. Clearly, the voltage stability margins of the concerned 

contingencies are all increased to be greater than the required value of 10% under the planned 

controls. The iteration number in the second column represents the number of times of 

performing the MIP to get the optimal solution.  
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Table 4.3 Control allocations for shunt capacitors to increase voltage stability margin 
 

Locations 
for shunt 

cap. 

Maximum size  
Limit (p.u.) 

Overall optimal  
control allocation 

(p.u.) 

Solution to 
cont. (1) 

(p.u.) 

Solution to 
cont. (2) 

(p.u.) 

Solution to 
cont. (3) 

(p.u.) 
Bus 5 1.500 0.747 0.747 0.747 0.747 
Bus 6 1.500 1.500 1.384 1.500 1.500 
Bus 10 1.500 0.866 0.866 0.866 0.866 
Bus 11 1.500 1.500 1.500 1.500 1.500 
Bus 12 1.500 1.500 1.500 1.500 1.500 

 
Table 4.4 Control allocations for shunt and series capacitors to increase voltage stability 

margin 
 

Locations for 
shunt and series 

cap. 

Maximum 
size limit 

(p.u.) 

Overall optimal 
control allocation

(p.u.) 

Solution to 
cont. (1) 

(p.u.) 

Solution to 
cont. (2) 

(p.u.) 

Solution to 
cont. (3) 

(p.u.) 
Bus 12 1.500 0.973 0.258 0.361 0.973 

Line 2-3 0.011 0.011 0.011 0.011 0.011 
Line 8-9 0.025 0.025 0.025 0.025 0.025 

 
Table 4.5 Voltage stability margin under planned controls 

  

Candidate  
controls 

Iteration 
number for MIP

Voltage stability 
margin for cont. 

(1) 

Voltage stability 
margin for cont. 

(2) 

Voltage stability 
margin for cont. 

(3) 
Shunt capacitors 6 10.01% 10.01% 10.01% 
Shunt and series 

capacitors 3 10.01% 10.01% 10.02% 
 

4.4 Summary 
 

This chapter presents an optimization based method of planning reactive power controls in 

electric transmission systems to satisfy the voltage stability margin requirement under a set of 

contingencies. The backward/forward search algorithm with linear complexity is used to 

select candidate locations for switched shunt and series capacitors. Optimal locations and 

amounts of new switch controls are obtained by solving a sequence of mixed integer 
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programming problems. The effectiveness of the method is illustrated using the New England 

39 bus system. The results show that the method works satisfactorily to plan reactive power 

controls.  
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CHAPTER 5  OPTIMAL ALLOCATION OF STATIC AND  
DYNAMIC VAR RESOURCES 

 

5.1 Introduction 
 

Sufficient controllable reactive power resources are essential for reliable operation of 

electric power systems. Inadequate reactive power support has led to voltage collapses and has 

been a cause of several recent major power outages worldwide. While the August 2003 

blackout in the United States and Canada was not due to a voltage collapse, the final report of 

the U.S.-Canada Power System Outage Task force said that “insufficient reactive power was 

an issue in the blackout” [67].  

Generally, reactive power supply can be divided into two categories: static and dynamic 

VAR resources. Dynamic VAR resources such as Static VAR Compensators (SVCs) have a 

fast response time while static VAR resources such as Mechanically Switched Capacitors 

(MSCs) have a relatively slow response time [10]. In addition, dynamic VAR devices can 

continuously control reactive power output but static VAR devices can not. On the other hand, 

the cost of static VAR resources is much lower than that of dynamic VAR resources [24]. 

Differences in effectiveness and costs of different devices dictate that reactive power 

generally is provided by a mix of static and dynamic VAR resources. Mechanically switched 

capacitors are cost-effective to increase post-contingency voltage stability margin. More 

expensive SVCs are usually used to deal with transient voltage dip and short-term voltage 

stability problems [4, 61, 68, 69, 70, 71] because the capability for rapid on-off switching of 

mechanically switched capacitors is significantly limited [72]. In this chapter, we focus on 

mechanically switched shunt capacitors as static VAR resources and SVCs as dynamic VAR 

resources because they have been widely used in the electric power industry as reactive power 
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support. However, the proposed algorithm is applicable to plan other VAR resources as well.    

There are three basic problems to be addressed for planning static and dynamic VAR 

resources: 

1) how much reactive capacity to build; 

2) where to build; 

3) what should be split between static and dynamic VAR resources. 

There is a limited amount of publications about coordinated planning of static and 

dynamic VAR resources. The methods in [42] [43] [44] [45] use a sequential procedure to 

allocate static and dynamic VAR resources. In this chapter, an optimization based method is 

presented to simultaneously determine the optimal allocation of static and dynamic VAR 

resources to satisfy the requirements of voltage stability margin and transient voltage dip. The 

remaining parts of this chapter are organized as follows. Section 5.2 presents transient voltage 

dip sensitivities. Section 5.3 describes the proposed mixed integer programming based 

method to optimally allocate static and dynamic VAR resources. Section 5.4 provides 

numerical results to illustrate the effectiveness of the approach. Section 5.5 concludes.  

5.2 Transient Voltage Sensitivities 
 

An SVC is an effective means to mitigate transient voltage dip by providing dynamic 

reactive power support. The ability of an SVC to mitigate transient voltage dip depends on the 

SVC’s capacitive limit (size) Bsvc, as shown in Figure 5.1. Dynamic reactive power support 

increases with Bsvc, but so does the SVC cost. We desire to identify the most effective 

locations and to determine the minimum capacitive limits of SVCs such that the transient 

voltage dip criteria are satisfied. To do this, we deploy a sequence of linear 

search/optimizations which require voltage dip magnitude and duration sensitivities to the 
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SVC capacitive limit. These sensitivities are derived in this section.    

 

Figure 5.1 Static VAR compensator model 
 

As shown in Figure 5.1, there is a non-windup limit on the SVC output, constraining the 

SVC susceptance output B. When the SVC output reaches the capacitive limit, the SVC 

becomes non-controllable and is equivalent to a shunt capacitor. Therefore, the power system 

model when the SVC output reaches the limit is different from that when the SVC output is 

within the limit. There are also hard limits on other power system controllers such as generator 

excitation systems [73]. Thus, the response of a power system is hybrid when studying large 

disturbances. It exhibits periods of smooth behavior, interspersed with discrete events. 

Smooth behavior is driven by devices such as generators and loads that are described by 

differential-algebraic equations. Discrete events are arising, for example, from enforcement of 

controller hard limits. Systems that exhibit intrinsic interactions between continuous 

dynamics and discrete events are generally called hybrid systems [74].   

In order to derive the sensitivities of the voltage dip time duration and the maximum 

transient voltage dip to the SVC capacitive limit, the hybrid system nature of a power system 

need to be considered. The hybrid system model proposed in [73] and [75] is adopted here to 

derive the sensitivities. An overview of the hybrid system model is provided in Appendix A. 
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The sensitivities of the voltage dip time duration and the maximum transient voltage dip to the 

SVC capacitive limit are derived based on the trajectory sensitivities of hybrid systems 

presented in [75]. The trajectory sensitivities provide a way of quantifying the variation of a 

trajectory resulting from (small) changes to parameters and/or initial conditions [76]. An 

overview of the trajectory sensitivities is proved in Appendix B. 

5.2.1 Sensitivity of Voltage Dip Time Duration to SVC Capacitive Limit 

The sensitivity of the voltage dip time duration to the SVC capacitive limit is the change 

of the voltage dip time duration for a given change in the SVC capacitive limit which can be 

treated as a parameter and be included in x0 which is a vector including parameters and initial 

conditions of state variables in Appendix B. 

Let τ(1) be the time at which the transient voltage dip begins after a fault is cleared and τ(2) 

the time at which the transient voltage dip ends as shown in Figure 1.3 Then the time duration 

of the transient voltage dip τdip is given by 

)1()2(
dip τττ −=                             (5.1) 

Thus, the sensitivity of the voltage dip time duration to the capacitive limit of an SVC, Sτ, 

is  
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where )1(
svcBτ  and )2(

svcBτ  are calculated in (B.9) of Appendix B. Note that the hypersurface 

s(x,y) in (B.9) is defined by 0.8Vi(0) – Vi(t) when calculating )1(
svcBτ , and is defined by Vi(t) – 

0.8Vi(0) when calculating )2(
svcBτ  where Vi is the voltage at load bus i. 

Bus voltage recovery may be slow after a fault is cleared as shown in Figure 5.2. In this 

case, τ(1) is equal to the time at which the fault is cleared. Therefore, 0)1(
svc
=Bτ  and )2(

svcBS ττ = . 
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Figure 5.2 Slow voltage recovery after a fault 
 

5.2.2 Sensitivity of Maximum Transient Voltage Dip to SVC Capacitive Limit 

The maximum transient voltage dip Vdip after the fault is cleared is defined as 

%100
0
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dip ×

−
=

V
VVV                           (5.3) 

where V0 is the pre-fault voltage and Vmin is the minimum voltage magnitude during the 

transient voltage dip. 

The sensitivity of the maximum transient voltage dip to the SVC capacitive limit, SV, is the 

change of the maximum transient voltage dip for a given change in the SVC capacitive limit 
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where ∂V/∂Bsvc is the voltage trajectory sensitivity to the SVC capacitive limit which is 

calculated by solving (B.3) and (B.4) in Appendix B, and tmax_dip is the time when the 

maximum transient voltage dip (minimum voltage magnitude) occurs after the fault is cleared. 

Note that tmax_dip is dependent upon Bsvc and is obtained from the voltage trajectory where the 

rate of change of voltage is zero.  
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5.2.3 Numerical Approximation 

From computation point of view, the trajectory sensitivities and the transient voltage dip 

sensitivities require the integration of a set of differential algebraic equations as shown in 

Appendix B. For large systems, these equations have high dimension. The computational cost 

of obtaining the sensitivities is minimal when an implicit numerical integration technique such 

as trapezoidal integration is used to generate the trajectory [75], [77], [78]. An alternative to 

calculate the sensitivities is using numerical approximation 
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The procedure requires repeated runs of simulation of the system model for the SVC 

capacitive limits Bsvc and Bsvc+∆Bsvc. The senstivities are then given by the change of the 

voltage dip time duration or the maximum transient voltage dip divided by the SVC capacitive 

limit change ∆Bsvc. The involved computational cost of this procedure may be greater than 

direct calculation of the sensitivities if many sensitivities are desired. However, it is easier to 

implement for a practical large power system. In this work, time domain simulations and 

voltage dip sensitivities were obtained using Siemens PTI’s PSS/ETM version 30.1 software. 

5.3 Algorithm of Optimal Allocation of Static and Dynamic VAR Resources 

A flowchart for planning static and dynamic VAR resources is shown in Figure 5.3. Each 

block in the flowchart will be explained in detail in the following subsections. After the 

contingency analysis, the proposed algorithm of allocation of static and dynamic VAR 

resources has three stages. 
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Find cases with small voltage 
stability margin and/or 

excessive transient voltage 
dip

Stage 1: Find candidate static 
and dynamic VAR locations 
using the linear complexity 

search algorithm

Stage 2: Use initial mixed 
integer programming to 

estimate static and dynamic 
VAR locations and amounts 

Update static and dynamic 
VAR locations and amounts

Check voltage stability 
margin using CPF and check 

transient voltage response 
using time domain simulation

Satisfactory
Margin and transient 

voltage response?

No

Start

Update sensitivities

Update static and dynamic 
VAR locations and/or 

amounts

Stage 3: Use mixed integer 
programming with updated 
information to refine static 

and dynamic VAR locations 
and amounts

EndConverge

No

YesYes

 

Figure 5.3 Flowchart for the static and dynamic VAR allocation 
 

5.3.1 Contingency Analysis 

In this step, the contingencies which cause insufficient voltage stability margin and/or 

excessive transient voltage dip problems are identified. In finding the contingencies having 

insufficient voltage stability margin, the fast contingency screening technique proposed in 

[55] is used. First, the post fault voltage stability margin is estimated based on voltage stability 

margin sensitivities. Then, the contingencies are ranked from most severe to least severe 

according to the value of the estimated voltage stability margin. After the ordered contingency 

list is obtained, each contingency is evaluated starting from the most severe one using the 
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continuation power flow. Evaluation terminates after encountering a certain number of 

sequential contingencies having the voltage stability margin greater than or equal to the 

required value, where the number depends on the size of the contingency list.  

In finding the contingencies having excessive transient voltage dip problems, the time 

domain simulation is used. A program was developed to automate identification of 

contingencies and buses which violate the transient voltage dip criteria based on the output of 

the time domain simulation. 

5.3.2 Selection of Candidate VAR Locations 

An important step in the VAR planning problem is the selection of candidate locations. 

Candidate locations may be chosen based on experience and/or the relative value of linear 

sensitivities of new reactive power compensation devices. In this case, however, there is no 

guarantee that the selected candidate locations for reactive compensation are sufficient to 

satisfy the requirements of voltage stability margin and transient voltage dip. On the other 

hand, the computational cost to solve the Stage 2 mixed integer programming problem is high 

if all buses in a large power system are selected as candidates. To identify a sufficient but not 

excessive number of locations, the backward/forward search algorithm with linear complexity 

proposed in Chapter 2 can be used to find candidate locations for switched shunt capacitors 

and SVCs to increase voltage stability margin, and to find candidate locations for SVCs to 

deal with transient voltage dip problems. It is assumed that the capacities of switched shunt 

capacitors and SVCs are fixed at the maximum allowable value in this step.  

5.3.3 Formulation of Initial Mixed Integer Programming 

In stage 1, we find the candidate locations for mechanically switched shunt capacitors and 

SVCs. A mixed integer program (MIP) is used in stage 2 to exclude candidate locations not 
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needed, and to estimate the mix of mechanically switched shunt capacitors and SVCs at 

needed locations. The MIP minimizes the total installation cost of mechanically switched 

shunt capacitors and SVCs while satisfying the requirements of voltage stability margin and 

transient voltage dip. 

minimize 
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shunt_shuntmax_shunt_shunt_shuntmin_ iiiii qBBqB ≤≤                 (5.13) 

svc_svcmax_svc_svc_svcmin_ iiiii qBBqB ≤≤                    (5.14) 
1,0, svc_shunt_ =ii qq                              (5.15) 

The decision variables are (k)
shunt_iB , Bi_shunt, qi_shunt, (k)

svc_iB , Bi_svc, and qi_svc.  

Variable definition follows:  

• Cf_shunt is fixed installation cost and Cv_shunt is variable cost of shunt capacitors, 

• Cf_svc is fixed installation cost and Cv_svc is variable cost of SVCs, 

• Bi_shunt: size of the shunt capacitor at location i,  

• Bi_svc: size of the SVC at location i, 

• qi_shunt=1 if the location i is selected for installing shunt capacitors, otherwise, 

qi_shunt=0, 

• qi_svc=1 if the location i is selected for installing SVCs, otherwise, qi_svc=0, 
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• the superscript k represents the contingency causing insufficient voltage stability 

margin and/or excessive transient voltage dip problems, 

• Ωshunt: set of candidate locations to install shunt capacitors, 

• Ωsvc: set of candidate locations to install SVCs, 

• Ω: union of Ωshunt and Ωsvc, 

• )(
shunt_

k
iB : size of the shunt capacitor to be switched on at location i under contingency k,  

• )(
svc_

k
iB : size of the SVC at location i under contingency k, 

• )(
,

k
iMS : sensitivity of the voltage stability margin with respect to the shunt susceptance at 

location i under contingency k,  

• )(
,,

k
inSτ : sensitivity of the voltage dip time duration at bus n with respect to the size of the 

SVC at location i under contingency k, 

• )(
,,

k
inVS : sensitivity of the maximum transient voltage dip at bus n with respect to the size 

of the SVC at location i under contingency k, 

• M(k): voltage stability margin under contingency k and without controls, 

• Mr: required voltage stability margin, 

• τdip,n
(k): time duration of voltage dip at bus n under contingency k and without controls, 

• τdip,n,r: maximum allowable time duration of voltage dip at bus n, 

• Vdip,n
(k): maximum transient voltage dip at bus n under contingency k and without 

controls, 

• Vdip,n,r: maximum allowable transient voltage dip at bus n, 

• Bimin_shunt: minimum size of the shunt capacitor at location i, 
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• Bimax_shunt: maximum size of the shunt capacitor at location i, 

• Bimin_svc: minimum size of the SVC at location i, and 

• Bimax_svc: maximum size of the SVC at location i. 

The inequality constraint in (5.8) requires that the voltage stability margin under each 

concerned contingency is greater than the required value. Note that SVCs can also be used to 

increase the voltage stability margin. The inequality constraint in (5.9) requires that the time 

duration of transient voltage dip for each concerned bus under each concerned contingency is 

less than the maximum allowable value. The inequality constraint in (5.10) requires that the 

maximum transient voltage dip for each concerned bus under each concerned contingency is 

less than the maximum allowable value. 

The optimization formulation in (5.7)-(5.15) does not directly involve complex steady 

state and dynamic power system models. Instead, it uses the corresponding sensitivity 

information. In addition, the backward/forward search algorithm provides that the number of 

candidate locations for reactive compensation can be limited to be relatively small even for 

problems of the size associated with practical power systems. Therefore, the computational 

cost for solving the above mixed integer programming formulation is not high even for 

large-scale power systems. The branch-and-bound method is used to solve this mixed integer 

programming problem. 

The output of the mixed integer programming problem is the reactive compensation 

locations and amounts for all concerned contingencies and the combined reactive 

compensation location and amount. Then the network configuration is updated by including 

the identified reactive power support under each contingency. After that, the voltage stability 

margin is recalculated using CPF to check if sufficient margin is achieved for each concerned 
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contingency. Also, time domain simulations are carried out to check whether the requirement 

of the transient voltage dip performance is met. This step is necessary because the power 

system model is inherently nonlinear, and the mixed integer programming algorithm uses 

linear sensitivities to estimate the effect of variations of reactive support levels on the voltage 

stability margin and transient voltage dip. As a result, there may be contingencies that have 

insufficient voltage stability margin or excessive transient voltage dip after updating the 

network configuration according to results of the initial mixed integer programming problem. 

Also, the obtained solution may not be optimal after one iteration of MIP. The reactive 

compensation locations and/or amounts can be further refined by recomputing sensitivities 

(with updated network configuration) under each concerned contingency, and solving a 

second-stage mixed integer programming problem, as described in the next subsection. 

5.3.4 Formulation of MIP with Updated Information 

The successive MIP problem is formulated to minimize the total installation cost of 

mechanically switched shunt capacitors and SVCs subject to the constraints of the 

requirements of voltage stability margin and transient voltage dip, as follows: 
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kBBB i
k

ii ∀≤≤ ,svc_
)(
svc_svcmin_                            (5.21) 

shunt_shuntmax_shunt_shunt_shuntmin_ iiiii qBBqB ≤≤                     (5.22) 

svc_svcmax_svc_svc_svcmin_ iiiii qBBqB ≤≤                       (5.23) 

1,0, svc_shunt_ =ii qq                              (5.24) 

The decision variables are 
)(
shunt_

k
iB , shunt_iB , shunt_iq , 

)(
svc_

k
iB , svc_iB  and svc_iq . 

Variable definition follows:  

• shunt_iB : new size of the shunt capacitor at location i,  

• svc_iB : new size of the SVC at location i, 

• shunt_iq  and svc_iq are new binary location variables for shunt capacitors and SVCs, 

• )(
,

k
iMS : updated sensitivity of the voltage stability margin with respect to the shunt 

susceptance at location i under contingency k,  

• )(
,,

k
inSτ : updated sensitivity of the voltage dip time duration at bus n with respect to the 

size of the SVC at location i under contingency k, 

• )(
,,

k
inVS : updated sensitivity of the maximum transient voltage dip at bus n with respect to 

the size of the SVC at location i under contingency k, 

• 
)(
shunt_

k
iB : new size of the shunt capacitor at location i under contingency k,  

• 
)(
svc_

k
iB : new size of the SVC at location i under contingency k,  

• ( )k
M : updated voltage stability margin under contingency k, 

• )(
dip,
k

nτ : updated time duration of voltage dip at bus n under contingency k, and 

• )(
dip,
k

nV : updated maximum transient voltage dip at bus n under contingency k. 

The inequalities in (5.17)-(5.19) are the constraints of voltage stability margin, time 

duration of voltage dip and the maximum transient voltage dip respectively. They incorporate 
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updated sensitivities, voltage stability margin and transient voltage dip behavior under each 

concerned contingency. The above successive MIP will end until all concerned contingencies 

have satisfactory voltage stability margin and transient voltage response and there is no 

significant movement of the decision variables from the previous MIP solution. 

5.4 Numerical Results 

The proposed method has been applied to the New England 39 bus system, In the 

simulations, the following conditions are implemented unless stated otherwise: 

• The required voltage stability margin is assumed to be 10%; 

• The WECC reliability criteria is adopted for transient voltage dip problems; 

• In computing voltage stability margin and margin sensitivities, 1) loads are 

modeled as constant power, 2) reactive power output limits of generators are 

modeled, 3) the power factor of the load remains constant when the load increases, 

and load and generation increase are proportional to their base case value; 

• In performing time domain simulations and calculating the transient voltage dip 

sensitivities, loads are modeled as 30% constant impedance, 30% constant current 

and 40% constant power; 

• The parameter values adopted in the optimization problem are given in Table 5.1.  

Table 5.1 Parameter values adopted in optimization problem 
 

 Shunt capacitor SVC 

Variable cost 
($ million/100 Mvar) 0.41 5 
Fixed cost ($ million) 1.3 1.5 
Maximum size (p.u.) 1.0 1.0 
Minimum size (p.u.) 10-3 10-3 
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Two contingencies violating reliability criteria are considered to illustrate the proposed 

algorithm of optimal allocating static and dynamic VAR resources. The first contingency is 

outage of the generator at bus 31. The second contingency is a three-phase-to-ground 

short-circuit fault on the transmission line 5-6, followed by clearance of the fault by removal 

of the transmission line. The details of the two contingencies are listed in Table 5.2. The first 

contingency violates the voltage stability margin criteria while the second contingency 

violates the transient voltage dip criteria at the load bus 7.  

Table 5.2 Contingencies violating reliability criteria 
 

Contingency 
Voltage stability 

margin  
(%) 

Time duration 
of voltage dip 

exceeding 20% 
(cycles) 

Maximum 
transient 

voltage dip 
(%) 

(1). Outage of the generator at bus 31 2.69 No violation No violation

(2). Short circuit and outage of the line 
5-6 (voltage at load bus 7) No violation 29.10 26.83 
 

The candidate control locations are determined based on the linear search algorithm 

presented in Section 5.3.2. Six candidate buses are chosen to install switched shunt capacitors 

and SVCs. They are buses 6, 7, 8, 10, 11 and 12. For these candidate locations, the 

optimization based reactive power planning algorithm presented in Sections 5.3.3 and 5.3.4 

was carried out. Table 5.3 shows the allocation of mechanically switched shunt capacitors as 

1.0 p.u., 0.178 p.u., 1.0 p.u., 1.0 p.u., 1.0 p.u. at buses 6, 7, 10, 11, 12 respectively. These 

capacitors will be switched on under contingency 1 to increase the voltage stability margin. 

Table 5.4 shows the allocation of SVCs as 0.6 p.u., 1.0 p.u. at buses 6 and 7 respectively. The 

identified SVCs can eliminate the transient voltage dip problem under contingency 2. The 
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SVCs along with the switched shunt capacitors can increase the voltage stability margin to 

10% under contingency 1. Table 5.5 shows that the requirements of voltage stability margin 

and transient voltage dip are satisfied with the planned static and dynamic VAR resources 

under the concerned two contingencies. Figure 5.4 shows the voltage responses at bus 7 under 

contingency 2 with and without SVCs. Figure 5.5 shows the SVC output at bus 6 under 

contingency 2. Figure 5.6 shows the SVC output at bus 7 under contingency 2. The outputs of 

both SVCs reach the capacitive limits during the transient voltage dip. 

Table 5.3 Allocation of mechanically switched shunt capacitors 
 

Locations for shunt cap. 
Maximum size 

limit 
(p.u.) 

Overall optimal 
control allocation

(p.u.) 

Solution to 
cont. (1) 

(p.u.) 

Solution to 
cont. (2) 

(p.u.) 

Bus 6 1.0 1 1 N/A 
Bus 7 1.0 0.178 0.178 N/A 
Bus 8 1.0 0 0 N/A 
Bus 10 1.0 1 1 N/A 
Bus 11 1.0 1 1 N/A 
Bus 12 1.0 1 1 N/A 

 
 

Table 5.4 Allocation of SVCs 
 

Locations for SVC 
Maximum size 

limit 
(p.u.) 

Overall optimal 
control allocation 

(p.u.) 

Solution to 
cont. (1) 

(p.u.) 

Solution to 
cont. (2) 

(p.u.) 

Bus 6 1.0 0.6 0.6 0.6 
Bus 7 1.0 1.0 1.0 1.0 
Bus 8 1.0 0 0 0 
Bus 10 1.0 0 0 0 
Bus 11 1.0 0 0 0 
Bus 12 1.0 0 0 0 
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Table 5.5 System performance under planned static and dynamic VARs 
 

Contingency 
Voltage stability 

margin 
(%) 

Time duration of voltage 
dip exceeding 20% 

(cycles) 

Maximum transient 
voltage dip 

(%) 

(1). Outage of the 
generator at bus 31 10.02% No violation No violation 

(2). Short circuit and 
outage of the line 5-6 
(voltage at load bus 7) No violation 20 23.74 
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Figure 5.4 Voltage response at bus 7 under contingency 2 
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Figure 5.5 SVC output at bus 6 under contingency 2 
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Figure 5.6 SVC output at bus 7 under contingency 2 
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5.5 Summary 

This chapter presents an optimization based method of coordinated planning of static and 

dynamic VAR resources in electric transmission systems to satisfy the requirements of 

voltage stability margin and transient voltage dip under contingencies. The backward/forward 

search algorithm with linear complexity is used to select candidate locations for VAR 

resources. Optimal locations and amounts of new VAR resources are obtained by solving a 

sequence of mixed integer programming problems. The effectiveness of the method is 

illustrated using the New England 39 bus system. The results show that the method works 

satisfactorily to plan static and dynamic VAR resources under a set of contingencies.  
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CHAPTER 6  CONCLUSTIONS AND FUTURE WORK 
 

6.1 Conclusions 
 
This dissertation developed systematic algorithms to plan reactive power controls for 

transmission enhancement. The research has been motivated by recent major power outages 

worldwide caused by voltage instability and the industry need of effective algorithms of 

reactive power control planning to counteract voltage instability and thus enhance the electric 

transmission system. The main contributions of this research are the development of 

algorithms to select candidate control locations to satisfy system performance requirements, 

the derivation of transient voltage dip sensitivities for dynamic VAR planning, and the 

development of reactive power control planning algorithms to restore post-contingency 

equilibria, to increase post-contingency voltage stability margin, and to mitigate 

post-contingency transient voltage dip. All the proposed algorithms have been implemented 

with MATLAB and tested on the New England 39-bus system. The simulation results indicate 

that they can be used to effectively plan reactive power controls for electric transmission 

system enhancement.  

The specific contributions of this research are summarized as follows: 

1. Development of a backward/forward search algorithm to select candidate locations 

of reactive power controls while satisfying power system performance 

requirements. In the past, candidate control locations are usually chosen based on 

the engineering judgment. There is no guarantee that the selected locations are 

effective and sufficient to provide required reactive power support for all 

concerned contingencies. The proposed algorithm, however, can identify effective 
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and sufficient candidate locations for reactive power control planning. It reduces 

the computational cost to solve the MIP/MINLP based reactive power control 

planning problem by limiting the number of candidate locations. It has complexity 

linear in the number of feasible reactive power control locations whereas the 

solution space is exponential. Simulation results show that the backward/forward 

search algorithm can effectively find candidate reactive power control locations.  

2. Development of a mixed integer programming based algorithm of reactive power 

control planning to restore equilibria under a set of severe contingencies. In the 

past, optimal power flow techniques could be used to restore post-contingency 

equilibrium for each contingency. It is hard to solve the conventional OPF 

problems considering multiple contingencies at the same time since they need to 

incorporate the power system models for all the concerned contingencies. 

However, it is very easy for the proposed algorithm to handle multiple 

contingencies. It is only in calculating the critical points and associated 

sensitivities that we must deal with the full size of the power system. Simulation 

results indicate that this algorithm is effective and fast to find good reactive power 

controls for the restoration of post-contingency equilibria.   

3. Development of a mixed integer programming based algorithm of reactive power 

control planning to increase voltage stability margin under a set of contingencies. 

Again, the proposed algorithm is very effective in dealing with voltage stability 

requirements under multiple contingencies compared with conventional methods. 

Because the optimization formulation is linear, it is fast, yet it provides good 

solutions for large-scale power systems compared with MINLP. Simulation results 
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show that this algorithm is effective to plan reactive power controls for the 

increase of the post-contingency voltage stability margin.   

4. Development of a systematic algorithm of coordinated planning of static and 

dynamic VAR resources while satisfying the performance requirements of voltage 

stability margin and transient voltage dip. It is the first time to use the optimization 

based method for the determination of the optimal balance between static and 

dynamic VAR resources. This work is also the first to propose the use of transient 

voltage dip sensitivities for dynamic VAR planning. Simulation results indicate 

that the proposed algorithm is effective to determine the optimal mix of static and 

dynamic VAR resources. The total installation cost of reactive power control 

devices can be reduced by using the proposed simultaneous optimization 

formulation. 

6.2 Future Work 

In the future work, the following issues should be addressed: 

1. Consideration of other stability/security constraints. This research has focused on 

the reactive power control planning to increase the voltage stability margin and to 

mitigate the transient voltage dip. Other stability/security constraints such as 

transient stability and post-contingency bus voltage magnitude requirements may 

also be included in the optimization formulation of the reactive power control 

planning. 

2. Economic benefit analysis and cost allocation. The planned reactive power control 

devices are intended to serve as control response for contingencies. Further 

research on quantifying the economic benefit of these devices and efficiently 
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allocating the investment cost under the environment of deregulation is 

challenging but important. 
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APPENDIX A HYBRID SYSTEM MODEL 
 
Without any discrete event, a power system can be described by a set of differential 

algebraic equations 

),( yxfx =
•
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with the vectors  

⎥
⎦

⎤
⎢
⎣

⎡
=

p
x

x , ⎥
⎦

⎤
⎢
⎣

⎡
=

0
f

f                           (A.3) 

where nRx∈  are true dynamic states, lRp∈  are parameters, mRy∈  are algebraic states. 

Incorporating parameters into dynamic states allows a compact development of trajectory 

sensitivities in Appendix B. 

Switching events, such as network topology changing, will alter the algebraic equations in 

(A.2) as 
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where g-(x,y) and g+(x,y) are sets of algebraic equations before and after the triggering event 

respectively, s(x,y) is the triggering function. After the triggering event, algebraic variables y 

may have a step change in order to satisfy the new algebraic constraints.  

Other event, such as transformer tap changing, can be modeled by a reset equation 

0),(),( == −−+ yxsyxhx                     (A.5) 

with the vector 
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where h is the reset function of the dynamic states x. Reset events (A.5) cause a discrete 

change in elements of x. 

The flows of x and y are defined as 

),()( 0 txtx xφ=                              (A.7) 

),()( 0 txty yφ=                              (A.8) 

with initial conditions, 

000 ),( xtxx =φ                             (A.9) 

0)),(,( 000 =txxg yφ                           (A.10) 

More details of the above model can be found in [73] and [75]. 
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APPENDIX B TRAJECTORY SENSITIVITIES 
 
Changes of the flows xφ  and yφ  causing by deviations of the initial conditions and/or 

parameters are obtained by a Taylor series expansion of (A.7) and (A.8) and neglecting higher 

order terms 

000
0

),()()( xtxx
x
txtx x ΔΦ≡Δ

∂
∂

=Δ                    (B.1) 

000
0

),()()( xtxx
x
tyty y ΔΦ≡Δ

∂
∂

=Δ                    (B.2) 

where Φx and Φy are the trajectory sensitivities [76].  

The variational equations describing the evolution of trajectory sensitivities away from 

discrete events are obtained by differentiating (A.1) and (A.2) with respect to x0 

yyxxx tftf Φ+Φ=Φ
•

)()(                       (B.3) 

yyxx tgtg Φ+Φ= )()(0                        (B.4) 

Initial conditions for Φx and Φy are obtained from (A.9) and (B.4) as  

Itxx =Φ ),( 00                             (B.5) 

),()()(0 0000 txtgtg yyx Φ+=                      (B.6) 

The trajectory sensitivities are often discontinuous at a discrete event. The step changes in 

Φx and Φy are described by the jump conditions which also provide the initial conditions for 

the post-event evolution of trajectory sensitivities. Assume the trajectory crosses the 

hypersurface s(x,y)=0 at the point (x(τ),y(τ)). This point is called the junction point and τ is the 

junction time. The jump conditions for the sensitivities Φx are given by 

0
*

0
*

0 )(),(),( xxxxx fhfxhx τττ −+−+ −−Φ=Φ                (B.7) 
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where 

−
−−−−=

τ
|))(( 1*

xyyxx gghhh                       (B.8) 

−−−−

−−−−
−

−

−

−

Φ−
−==

fggss
xggss

dx
d

xyyx

xxyyx
x

τ

τ
τ

τττ
|))((

),(|))((
)( 1

0
1

0
0

             (B.9) 

))(),(( −−−− ≡ ττ yxff                       (B.10) 

))(),(( ++++ ≡ ττ yxff                        (B.11) 

Equation (B.9) describes the sensitivity of the junction time τ to the initial conditions and 

parameters. The sensitivities Φy are given by  

),()())((),( 0
1

0
+++−+++ Φ−=Φ ττττ xggx xxyy              (B.12) 

More details about derivation and numerical solution approaches for trajectory 

sensitivities can be found in [73] and [75]. 
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